版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省萬寧市中考數(shù)學練習題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如果,那么的結果是(
)A. B. C. D.2、已知⊙O的半徑為4,,則點A在()A.⊙O內 B.⊙O上 C.⊙O外 D.無法確定3、如圖,A,B,C是正方形網(wǎng)格中的三個格點,則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無法判斷4、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點G(異于A,C),連接DG,將△AGD繞點A逆時針旋轉60°得到△AEF,則BF的長為(
)A. B.2 C. D.25、下列關于隨機事件的概率描述正確的是()A.拋擲一枚質地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率二、多選題(5小題,每小題3分,共計15分)1、對于二次函數(shù)y=﹣2(x﹣1)(x+3),下列說法不正確的是()A.圖象的開口向上B.圖象與y軸交點坐標是(0,6)C.當x>﹣1時,y隨x的增大而增大D.圖象的對稱軸是直線x=12、已知拋物線(,,是常數(shù),)經(jīng)過點,,當時,與其對應的函數(shù)值.下列結論正確的是(
)A. B.C. D.關于的方程有兩個不等的實數(shù)根3、(多選)若數(shù)使關于的一元二次方程有兩個不相等的實數(shù)解,且使關于的分式方程的解為非負整數(shù),則滿足條件的的值為(
)A.1 B.3 C.5 D.74、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關系如下表:t01234567…h(huán)08141820201814…下列結論正確的是(
)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m5、如圖,拋物線過點,對稱軸是直線.下列結論正確的是(
)A.B.C.若關于x的方程有實數(shù)根,則D.若和是拋物線上的兩點,則當時,第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、邊長為2的正三角形的外接圓的半徑等于___.2、關于的一元二次方程的一個根是2,則另一個根是__________.3、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.4、某批青稞種子在相同條件下發(fā)芽試驗結果如下表:每次試驗粒數(shù)501003004006001000發(fā)芽頻數(shù)4796284380571948估計這批青稞發(fā)芽的概率是___________.(結果保留到0.01)5、如果關于的一元二次方程的一個解是,那么代數(shù)式的值是___________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.2、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.五、解答題(4小題,每小題10分,共計40分)1、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.2、小明和小麗先后從A地出發(fā)同一直道去B地,設小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達式,與x之間的函數(shù)表達式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達B地這段時間內,兩人何時相距最近?最近距離是多少?3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構成什么圖形,請說明理由.4、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經(jīng)過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)比例的性質即可得到結論.【詳解】∵=,∴可設a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質,解本題的要點根據(jù)題意可設a,b的值,從而求出答案.2、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內?d<r.3、B【分析】根據(jù)三點確定一個圓,圓心的確定方法:任意兩點中垂線的交點為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線段的中垂線相交,交點就是圓心.故選:B.【點睛】本題考查已知圓上三點求圓心,取任意兩條線段中垂線交點確定圓心是解題關鍵.4、A【解析】【分析】過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,△AGD繞點A逆時針旋轉60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,F(xiàn)H=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點F作FH⊥BA交BA的延長線于點H,則∠FHA=90°,∵△AGD繞點A逆時針旋轉60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,F(xiàn)H=AF=1由勾股定理得AH=在Rt△BFH中,F(xiàn)H=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點】本題考查了圖形的旋轉,矩形的性質,含30度角的直角三角形的性質,勾股定理等知識,解決此題的關鍵在于作出正確的輔助線.5、D【分析】根據(jù)隨機事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機性的規(guī)律,但每次試驗出現(xiàn)的結果具有不確定,故選項A、B錯誤;隨機事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復實驗,用一個隨機事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、多選題1、ACD【解析】【分析】將函數(shù)解析式變成頂點式,依照二次函數(shù)的性質對比四個選項即可得出結論.【詳解】解:A、y=-2(x-1)(x+3),∵a=-2<0,∴圖象的開口向下,故本選項錯誤,符合題意;B、y=-2(x-1)(x+3)=-2x2-4x+6,當x=0時,y=6,即圖象與y軸的交點坐標是(0,6),故本選項正確,不符合題意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即當x>-1,y隨x的增大而減少,故本選項錯誤,符合題意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即圖象的對稱軸是直線x=-1,故本選項錯誤,符合題意.故選:ACD.【考點】本題考查了二次函數(shù)的性質,解題的關鍵是將二次函數(shù)關系式變?yōu)轫旤c式,聯(lián)系二次函數(shù)性質對比四個選項即可.2、BCD【解析】【分析】根據(jù)函數(shù)與點的關系,一元二次方程根的判別式,不等式的性質,逐一計算判斷即可.【詳解】∵拋物線(是常數(shù),)經(jīng)過點(-1,-1),,當時,與其對應的函數(shù)值,∴c=1>0,a-b+c=-1,4a-2b+c>1,∴a-b=-2,2a-b>0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,故A錯誤;∵b=a+2,a>2,c=1,,故B正確;∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,即,故C正確;∵,∴△==>0,∴有兩個不等的實數(shù)根,故D正確.故選:BCD.【考點】本題考查了二次函數(shù)的性質,一元二次方程根的判別式,不等式的基本性質,熟練掌握二次函數(shù)的性質,靈活使用根的判別式,準確掌握不等式的基本性質是解題的關鍵.3、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關于的一元二次方程有兩個不相等的實數(shù)解,∴,解得:,∵,∴,解得:,∵關于的分式方程的解為非負整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關鍵,注意分式的分母不為0的隱含條件,避免漏解.4、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應用、求出拋物線的解析式是解題的關鍵,屬于中考??碱}型.5、D【解析】【詳解】解:A.∵拋物線開口向下,∴a<0,∵對稱軸在y軸左側,∴a、b同號,∴b<0,∵拋物線與y軸交點在正半軸上,∴c>0,∴abc>0,故此選項不符合題意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵拋物線過點,對稱軸是直線,∴拋物線與x軸另一交點為(2,0),∴當x=2時,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此選項不符合題意;C.∵-=-1,∴b=2a,∵當x=2時,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵關于x的方程有實數(shù)根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此選項不符合題意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴點(x1,y1)到對稱軸的距離大于點(x2,y2)到對稱軸的距離,∴y1<y2,故此選項符合題意;故選:D.【考點】本題考查二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)的性質,二次函數(shù)與一元二次方程的聯(lián)系,熟練掌握二次函數(shù)圖象性質是解題的關鍵.三、填空題1、【分析】過圓心作一邊的垂線,根據(jù)勾股定理可以計算出外接圓半徑.【詳解】如圖所示,是正三角形,故O是的中心,,∵正三角形的邊長為2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(負值舍去).故答案為:.【點睛】本題考查了正多邊形和圓,解題的關鍵是根據(jù)題意畫出圖形,利用數(shù)形結合求解.2、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關鍵.3、【分析】根據(jù)圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關鍵是掌握扇形的面積公式.4、0.95【解析】【分析】利用大量重復試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可.【詳解】觀察表格得到這批青稞發(fā)芽的頻率穩(wěn)定在0.95附近,則這批青稞發(fā)芽的概率的估計值是0.95,故答案為:0.95.【考點】此題考查了利用頻率估計概率,從表格中的數(shù)據(jù)確定出這種油菜籽發(fā)芽的頻率是解本題的關鍵.5、【解析】【分析】根據(jù)關于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關鍵是明確一元二次方程的解的含義.四、簡答題1、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點】此題主要考查了相似三角形的應用,解決問題的關鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.2、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)相似三角形的性質可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點為D即可;(2)利用外角的性質以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據(jù)平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點】本題考查了尺規(guī)作圖,相似三角形的性質,外角的性質,難度不大,解題的關鍵是掌握尺規(guī)作圖的基本作法.五、解答題1、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考點】本題考查了因式分解法解一元二次方程:將方程的右邊化為零,把方程的左邊分解為兩個一次因式的積,令每個因式分別為零,解這兩個一元一次方程,它們的解就是原方程的解.2、(1)250;(2)當小麗出發(fā)第時,兩人相距最近,最近距離是【解析】【分析】(1)由x=0時,根據(jù)-求得結果即可;(2)求出兩人相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中級經(jīng)濟師人力資源考試真題及答案解析
- 新護士入職培訓考核制度
- 學生培訓出勤制度
- 感控培訓教育制度
- 化妝助理培訓制度
- 晨會制度培訓小結
- 義務教育教師培訓制度
- 舞蹈培訓收費交費制度
- 勞動法關于轉崗培訓制度
- 實驗室學校培訓制度
- 2025杭州市市級機關事業(yè)單位編外招聘考試備考試題及答案解析
- 車間電纜整改方案模板(3篇)
- 徐州村務管理辦法
- 政協(xié)機車輛管理辦法
- 食品加工助劑管理辦法
- DB50∕T 1604-2024 地質災害防治邊坡工程結構可靠性設計規(guī)范
- 渝22TS02 市政排水管道附屬設施標準圖集 DJBT50-159
- 非現(xiàn)場執(zhí)法培訓課件
- 中國電氣裝備資產(chǎn)管理有限公司招聘筆試題庫2025
- 糖尿病足的護理常規(guī)講課件
- 2025年高考英語復習難題速遞之語法填空(2025年4月)
評論
0/150
提交評論