山西省孝義市中考數(shù)學(xué)高分題庫附答案詳解【B卷】_第1頁
山西省孝義市中考數(shù)學(xué)高分題庫附答案詳解【B卷】_第2頁
山西省孝義市中考數(shù)學(xué)高分題庫附答案詳解【B卷】_第3頁
山西省孝義市中考數(shù)學(xué)高分題庫附答案詳解【B卷】_第4頁
山西省孝義市中考數(shù)學(xué)高分題庫附答案詳解【B卷】_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省孝義市中考數(shù)學(xué)高分題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④2、把圖中的交通標(biāo)志圖案繞著它的中心旋轉(zhuǎn)一定角度后與自身重合,則這個旋轉(zhuǎn)角度至少為(

)A.30° B.90° C.120° D.180°3、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.4、從下列命題中,隨機(jī)抽取一個是真命題的概率是(

)(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)兩條對角線長分別為6和8的菱形的周長是40.A. B. C. D.15、將等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.180二、多選題(5小題,每小題3分,共計15分)1、如圖,是的直徑,,是上的點,且,分別與,相交于點,,則下列結(jié)論一定成立的是(

)A. B. C.平分D. E.2、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(

)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是23、已知A、B兩點的坐標(biāo)分別是(-2,3)和(2,3),則下面四個結(jié)論正確的有(

)A.A、B關(guān)于x軸對稱; B.A、B關(guān)于y軸對稱;C.A、B關(guān)于原點對稱; D.若A、B之間的距離為44、下列方程中,關(guān)于x的一元二次方程有(

)A.x2=0 B.a(chǎn)x2+bx+c=0 C.x2-3=x D.a(chǎn)2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-95、下面的圖形中,繞著一個點旋轉(zhuǎn)120°后,能與原來的位置重合的是(

)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如果關(guān)于的一元二次方程的一個解是,那么代數(shù)式的值是___________.2、如圖,已知⊙O的半徑為2,弦AB的長度為2,點C是⊙O上一動點若△ABC為等腰三角形,則BC2為_______.3、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.4、平面直角坐標(biāo)系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉(zhuǎn)90°得到AB,當(dāng)BK取最小值時,點B的坐標(biāo)為_________.5、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.四、簡答題(2小題,每小題10分,共計20分)1、(1)閱讀理解如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標(biāo)分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認(rèn)為:可以通過“若,則”的思路證明上述命題.小晴認(rèn)為:可以通過“若,,且,則”的思路證明上述命題.請你選擇一種方法證明(1)中的命題.2、某種商品每件的進(jìn)價為10元,若每件按20元的價格銷售,則每月能賣出360件;若每件按30元的價格銷售,則每月能賣出60件.假定每月的銷售件數(shù)y是銷售價格x(單位:元)的一次函數(shù).(1)求y關(guān)于x的一次函數(shù)解析式;(2)當(dāng)銷售價格定為多少元時,每月獲得的利潤最大?并求此最大利潤.五、解答題(4小題,每小題10分,共計40分)1、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當(dāng)點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.2、已知關(guān)于x的一元二次方程x2+x?m=0.(1)設(shè)方程的兩根分別是x1,x2,若滿足x1+x2=x1?x2,求m的值.(2)二次函數(shù)y=x2+x?m的部分圖象如圖所示,求m的值.3、已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,求的值.4、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.-參考答案-一、單選題1、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準(zhǔn)確圖形是解題關(guān)鍵.2、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉(zhuǎn)的角度是120°的整數(shù)倍,∴旋轉(zhuǎn)的角度至少是120°.故選C.【考點】本題考查了旋轉(zhuǎn)對稱圖形,仔細(xì)觀察圖形求出旋轉(zhuǎn)角是120°的整數(shù)倍是解題的關(guān)鍵.3、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.4、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)菱形的對角線長為6和8根據(jù)菱形的性質(zhì),對角線互相垂直且平分,利用勾股定理可求得菱形的邊長為5,則菱形的周長為,是假命題則隨機(jī)抽取一個是真命題的概率是,故選:C.【考點】本題考查了命題的真假,概率,菱形的性質(zhì),無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關(guān)鍵是運用所學(xué)知識判斷各個命題的真假.5、C【分析】根據(jù)旋轉(zhuǎn)對稱圖形的概念(把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角),找到旋轉(zhuǎn)角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,因而繞其中心旋轉(zhuǎn)的最小度數(shù)是=120°.故選C.【點睛】本題考查了根據(jù)旋轉(zhuǎn)對稱性,掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.二、多選題1、ACDE【解析】【分析】根據(jù)直徑的性質(zhì),垂徑定理等知識一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點,∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項錯誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點】本題考查直徑的性質(zhì)、垂徑定理、平行線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.2、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當(dāng)Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應(yīng)用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).3、BD【解析】【分析】根據(jù)點坐標(biāo)關(guān)于原點對稱、軸對稱的特點,求出對應(yīng)點坐標(biāo)即可.【詳解】點A(-2,3)關(guān)于x軸對稱的點為(-2,-3),故A錯誤點A(-2,3)關(guān)于y軸對稱的點為(2,3),故B正確點A(-2,3)關(guān)于原點對稱的點為(2,-3),故C錯誤點A、點B的縱坐標(biāo)相同,故A、B之間的距離為,故D正確故選BD【考點】本題考查了點坐標(biāo)關(guān)于x,y軸對稱,關(guān)于原點中心對稱的特點,以及兩點間距離公式,熟悉對應(yīng)知識點是解決本題的關(guān)鍵.4、AC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A.x2=0,C.x2-3=x符合一元二次方程的定義;B.ax2+bx+c=0中,當(dāng)a=0時,不是一元二次方程;D.a2+a-x=0是關(guān)于x的一元一次方程;E.(m-1)x2+4x+=0,當(dāng)m=1時為關(guān)于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是無理方程;H.(x+1)2=x2-9展開后為x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故選AC.【考點】本題考查了一元二次方程的定義,一元二次方程具有以下三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.5、AB【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)對題中圖形進(jìn)行分析即可.【詳解】解:A、旋轉(zhuǎn)任意角度都與原圖形重合,故符合題意;B、旋轉(zhuǎn)最小的度數(shù)是120度與原圖形重合,故符合題意;C、旋轉(zhuǎn)最小的度數(shù)是72度(72度的整倍數(shù)都可以)與原圖形重合,則旋轉(zhuǎn)120度不能與原圖形重合,故不符合題意;D、旋轉(zhuǎn)最小的度數(shù)是90度(90度的整倍數(shù)都可以)與原圖形重合,則旋轉(zhuǎn)120度不能與原圖形重合,故不符合題意.故選AB.【考點】本題主要考查了圖形的旋轉(zhuǎn),理解旋轉(zhuǎn)的定義是解題的關(guān)鍵.三、填空題1、【解析】【分析】根據(jù)關(guān)于的一元二次方程的一個解是,可以得到的值,然后將所求式子變形,再將的值代入,即可解答本題.【詳解】解:關(guān)于的一元二次方程的一個解是,,,.故答案為:2020.【考點】本題考查一元二次方程的解,解答本題的關(guān)鍵是明確一元二次方程的解的含義.2、4或12或【分析】分三種情況討論:當(dāng)AB=BC時、當(dāng)AB=AC時、當(dāng)AC=BC時,根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時,BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時,過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時,則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.3、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.4、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當(dāng)點B與點M重合時,BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標(biāo),從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當(dāng)點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標(biāo)與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應(yīng)用,垂線段最短等知識,解題的關(guān)鍵是正確尋找點B的運動軌跡,學(xué)會利用垂線段最短解決最短問題.5、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.四、簡答題1、(1);(2)證明見解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點】本題考查反比例函數(shù)圖形上的點的坐標(biāo)特征,反比例函數(shù)的圖象等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.2、(1)(2)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元【解析】【分析】(1)設(shè),把,和,代入求出k、b的值,從而得出答案;(2)根據(jù)總利潤=每件利潤×每月銷售量列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質(zhì)求解可得答案.(1)解:設(shè),把,和,代入可得,解得,則;(2)解:每月獲得利潤.∵,∴當(dāng)時,P有最大值,最大值為3630.答:當(dāng)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元.【考點】本題主要考查了一次函數(shù)解析式的求法和二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意找到其中蘊含的相等關(guān)系,并據(jù)此得出函數(shù)解析式及二次函數(shù)的性質(zhì),然后再利用二次函數(shù)求最值.五、解答題1、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當(dāng)P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關(guān)于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當(dāng)P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關(guān)鍵.2、(1)(2)【解析】【分析】(1)根據(jù)根與系數(shù)的關(guān)系求得x1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論