高二數(shù)學(xué)期末考試試卷及答案_第1頁(yè)
高二數(shù)學(xué)期末考試試卷及答案_第2頁(yè)
高二數(shù)學(xué)期末考試試卷及答案_第3頁(yè)
高二數(shù)學(xué)期末考試試卷及答案_第4頁(yè)
高二數(shù)學(xué)期末考試試卷及答案_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高二數(shù)學(xué)期末考試試卷及答案

一、單項(xiàng)選擇題1.已知命題\(p\):\(\forallx\inR\),\(x^{2}+1\gt0\),則\(\negp\)是()A.\(\forallx\inR\),\(x^{2}+1\leq0\)B.\(\existsx\inR\),\(x^{2}+1\lt0\)C.\(\existsx\inR\),\(x^{2}+1\leq0\)D.\(\existsx\inR\),\(x^{2}+1\gt0\)答案:C2.若雙曲線\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\)(\(a\gt0\),\(b\gt0\))的一條漸近線方程為\(y=\sqrt{3}x\),則其離心率為()A.\(\sqrt{2}\)B.\(\sqrt{3}\)C.\(2\)D.\(3\)答案:C3.已知\(\vec{a}=(1,-2)\),\(\vec=(x,1)\),若\(\vec{a}\perp\vec\),則\(x\)的值為()A.\(2\)B.\(-2\)C.\(1\)D.\(-1\)答案:A4.在等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{3}+a_{5}=10\),則\(a_{4}\)的值為()A.\(5\)B.\(6\)C.\(8\)D.\(10\)答案:A5.拋物線\(y^{2}=8x\)的焦點(diǎn)坐標(biāo)是()A.\((2,0)\)B.\((-2,0)\)C.\((0,2)\)D.\((0,-2)\)答案:A6.已知\(x\),\(y\)滿足約束條件\(\begin{cases}x+y\geq1\\x-y\leq1\\y\leq1\end{cases}\),則\(z=2x-y\)的最大值為()A.\(1\)B.\(2\)C.\(3\)D.\(4\)答案:C7.橢圓\(\frac{x^{2}}{9}+\frac{y^{2}}{4}=1\)的焦距為()A.\(2\sqrt{5}\)B.\(\sqrt{5}\)C.\(2\sqrt{13}\)D.\(\sqrt{13}\)答案:A8.已知\(\{a_{n}\}\)是等比數(shù)列,\(a_{2}=2\),\(a_{5}=\frac{1}{4}\),則公比\(q\)等于()A.\(-\frac{1}{2}\)B.\(-2\)C.\(2\)D.\(\frac{1}{2}\)答案:D9.若直線\(l\)的方向向量為\(\vec{m}=(1,0,2)\),平面\(\alpha\)的法向量為\(\vec{n}=(-2,0,-4)\),則()A.\(l\parallel\alpha\)B.\(l\perp\alpha\)C.\(l\subset\alpha\)D.\(l\)與\(\alpha\)斜交答案:B10.在\(\triangleABC\)中,\(a=3\),\(b=\sqrt{6}\),\(A=\frac{2\pi}{3}\),則\(B\)等于()A.\(\frac{\pi}{4}\)B.\(\frac{\pi}{6}\)C.\(\frac{\pi}{3}\)D.\(\frac{\pi}{12}\)答案:A二、多項(xiàng)選擇題1.下列說(shuō)法正確的是()A.命題“若\(x^{2}=1\),則\(x=1\)”的否命題為“若\(x^{2}=1\),則\(x\neq1\)”B.命題“\(\existsx\inR\),\(x^{2}+x+1\lt0\)”的否定是“\(\forallx\inR\),\(x^{2}+x+1\geq0\)”C.命題“若\(x=y\),則\(\sinx=\siny\)”的逆否命題為真命題D.“\(x=-1\)”是“\(x^{2}-5x-6=0\)”的必要不充分條件答案:BC2.已知橢圓\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a\gtb\gt0)\)的左、右焦點(diǎn)分別為\(F_{1}\),\(F_{2}\),\(P\)是橢圓上一點(diǎn),且\(PF_{2}\perpx\)軸,若\(\anglePF_{1}F_{2}=30^{\circ}\),則橢圓的()A.離心率\(e=\frac{\sqrt{3}}{3}\)B.離心率\(e=\sqrt{3}-1\)C.短軸長(zhǎng)與長(zhǎng)軸長(zhǎng)之比為\(\frac{\sqrt{2}}{2}\)D.短軸長(zhǎng)與長(zhǎng)軸長(zhǎng)之比為\(\frac{\sqrt{6}}{3}\)答案:AD3.設(shè)\(\{a_{n}\}\)是等差數(shù)列,\(S_{n}\)是其前\(n\)項(xiàng)和,且\(S_{5}\ltS_{6}\),\(S_{6}=S_{7}\gtS_{8}\),則下列結(jié)論正確的是()A.\(d\lt0\)B.\(a_{7}=0\)C.\(S_{9}\gtS_{5}\)D.\(S_{6}\)與\(S_{7}\)均為\(S_{n}\)的最大值答案:ABD4.已知向量\(\vec{a}=(1,-1)\),\(\vec=(2,x)\),若\(\vec{a}\cdot\vec=1\),則()A.\(x=1\)B.\(|\vec|=\sqrt{5}\)C.\(\vec{a}\)與\(\vec\)的夾角為\(45^{\circ}\)D.\(\vec{a}\parallel\vec\)答案:ABC5.已知雙曲線\(C\):\(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a\gt0,b\gt0)\)的離心率為\(\sqrt{3}\),則()A.雙曲線\(C\)的漸近線方程為\(y=\pm\sqrt{2}x\)B.\(\frac{b^{2}}{a^{2}}=2\)C.雙曲線\(C\)的漸近線與圓\((x-2)^{2}+y^{2}=1\)相離D.雙曲線\(C\)的漸近線與圓\((x-2)^{2}+y^{2}=1\)相交答案:ABC6.設(shè)等比數(shù)列\(zhòng)(\{a_{n}\}\)的公比為\(q\),其前\(n\)項(xiàng)和為\(S_{n}\),前\(n\)項(xiàng)積為\(T_{n}\),并且滿足條件\(a_{1}\gt1\),\(a_{7}a_{8}\gt1\),\(\frac{a_{7}-1}{a_{8}-1}\lt0\),則下列結(jié)論正確的是()A.\(0\ltq\lt1\)B.\(a_{7}a_{9}\gt1\)C.\(T_{n}\)的最大值為\(T_{7}\)D.\(S_{n}\)的最大值為\(S_{7}\)答案:AC7.已知拋物線\(y^{2}=2px(p\gt0)\),過(guò)其焦點(diǎn)且斜率為\(1\)的直線交拋物線于\(A\),\(B\)兩點(diǎn),若線段\(AB\)的中點(diǎn)的縱坐標(biāo)為\(2\),則()A.\(p=1\)B.\(p=2\)C.\(|AB|=8\)D.\(|AB|=10\)答案:BC8.已知\(\vec{a}=(1,2)\),\(\vec=(-3,4)\),\(\vec{c}=\vec{a}+\lambda\vec(\lambda\inR)\),則()A.當(dāng)\(\lambda=-\frac{1}{5}\)時(shí),\(|\vec{c}|\)最小B.當(dāng)\(|\vec{c}|\)最小時(shí),\(\vec\perp\vec{c}\)C.當(dāng)\(\lambda=1\)時(shí),\(\vec{a}\)與\(\vec{c}\)夾角的余弦值為\(\frac{2\sqrt{5}}{5}\)D.當(dāng)\(\lambda=1\)時(shí),\(\vec{a}\)與\(\vec{c}\)夾角的余弦值為\(\frac{\sqrt{5}}{5}\)答案:ABC9.已知橢圓\(C\):\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a\gtb\gt0)\)的左、右頂點(diǎn)分別為\(A_{1}\),\(A_{2}\),點(diǎn)\(P\)是橢圓上異于\(A_{1}\),\(A_{2}\)的點(diǎn),若直線\(PA_{1}\),\(PA_{2}\)的斜率之積為\(-\frac{1}{2}\),則()A.橢圓\(C\)的離心率為\(\frac{\sqrt{2}}{2}\)B.橢圓\(C\)的離心率為\(\frac{1}{2}\)C.橢圓\(C\)的短軸長(zhǎng)是長(zhǎng)軸長(zhǎng)的\(\sqrt{2}\)倍D.橢圓\(C\)的短軸長(zhǎng)是長(zhǎng)軸長(zhǎng)的\(\frac{\sqrt{2}}{2}\)倍答案:AD10.已知\(a\),\(b\),\(c\)分別為\(\triangleABC\)三個(gè)內(nèi)角\(A\),\(B\),\(C\)的對(duì)邊,且\((a+b)(\sinA-\sinB)=(c-b)\sinC\),則()A.\(A=\frac{\pi}{6}\)B.\(A=\frac{\pi}{3}\)C.若\(a=2\),則\(\triangleABC\)面積的最大值為\(\sqrt{3}\)D.若\(a=2\),則\(\triangleABC\)面積的最大值為\(2\sqrt{3}\)答案:BC三、判斷題1.命題“若\(a\gtb\),則\(a^{2}\gtb^{2}\)”是真命題。(×)2.橢圓\(\frac{x^{2}}{m^{2}}+\frac{y^{2}}{n^{2}}=1(m\gt0,n\gt0)\)的焦點(diǎn)坐標(biāo)是\((\pm\sqrt{m^{2}-n^{2}},0)\)。(×)3.若\(\vec{a}\cdot\vec=0\),則\(\vec{a}=\vec{0}\)或\(\vec=\vec{0}\)。(×)4.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(q=2\),則\(S_{5}=31\)。(√)5.拋物線\(y^{2}=4x\)的準(zhǔn)線方程是\(x=-1\)。(√)6.若\(\{a_{n}\}\)是等差數(shù)列,則\(S_{n}\),\(S_{2n}-S_{n}\),\(S_{3n}-S_{2n}\)仍成等差數(shù)列。(√)7.雙曲線\(\frac{x^{2}}{9}-\frac{y^{2}}{16}=1\)的漸近線方程是\(y=\pm\frac{4}{3}x\)。(√)8.已知向量\(\vec{a}=(1,2)\),\(\vec=(-2,m)\),若\(\vec{a}\parallel\vec\),則\(m=-4\)。(√)9.在\(\triangleABC\)中,\(a=3\),\(b=5\),\(\sinA=\frac{1}{3}\),則滿足條件的\(\triangleABC\)有兩個(gè)。(√)10.若直線\(l\)的方向向量與平面\(\alpha\)的法向量垂直,則\(l\parallel\alpha\)。(×)四、簡(jiǎn)答題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項(xiàng)和為\(S_{n}\),\(a_{3}=5\),\(S_{5}=25\)。求數(shù)列\(zhòng)(\{a_{n}\}\)的通項(xiàng)公式。答案:設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\)。由\(a_{3}=5\)可得\(a_{1}+2d=5\);由\(S_{5}=25\),根據(jù)等差數(shù)列求和公式\(S_{n}=na_{1}+\frac{n(n-1)d}{2}\),有\(zhòng)(5a_{1}+\frac{5\times4d}{2}=25\),即\(5a_{1}+10d=25\),化簡(jiǎn)得\(a_{1}+2d=5\)。聯(lián)立解得\(a_{1}=1\),\(d=2\)。所以\(a_{n}=a_{1}+(n-1)d=1+2(n-1)=2n-1\)。2.已知橢圓\(C\):\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a\gtb\gt0)\)的離心率為\(\frac{\sqrt{2}}{2}\),且過(guò)點(diǎn)\((\sqrt{2},1)\)。求橢圓\(C\)的方程。答案:因?yàn)殡x心率\(e=\frac{c}{a}=\frac{\sqrt{2}}{2}\),即\(c=\frac{\sqrt{2}}{2}a\),又\(a^{2}=b^{2}+c^{2}\),所以\(a^{2}=b^{2}+\frac{1}{2}a^{2}\),即\(a^{2}=2b^{2}\)。橢圓過(guò)點(diǎn)\((\sqrt{2},1)\),將其代入橢圓方程得\(\frac{(\sqrt{2})^{2}}{a^{2}}+\frac{1^{2}}{b^{2}}=1\),把\(a^{2}=2b^{2}\)代入此式,可得\(\frac{2}{2b^{2}}+\frac{1}{b^{2}}=1\),解得\(b^{2}=2\),則\(a^{2}=4\)。所以橢圓\(C\)的方程為\(\frac{x^{2}}{4}+\frac{y^{2}}{2}=1\)。3.已

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論