版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省武岡市中考數(shù)學(xué)試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、下列事件是確定事件的是()A.方程有實(shí)數(shù)根 B.買一張?bào)w育彩票中大獎(jiǎng)C.拋擲一枚硬幣正面朝上 D.上海明天下雨2、如圖,點(diǎn)A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o3、從下列命題中,隨機(jī)抽取一個(gè)是真命題的概率是()(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長(zhǎng)是的正方體的表面展開圖的周長(zhǎng)一定是;(4)弧長(zhǎng)是,面積是的扇形的圓心角是.A. B. C. D.14、為了解某地區(qū)九年級(jí)男生的身高情況,隨機(jī)抽取了該地區(qū)1000名九年級(jí)男生的身高數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計(jì)結(jié)果,隨機(jī)抽取該地區(qū)一名九年級(jí)男生,估計(jì)他的身高不低于的概率是(
)A.0.32 B.0.55 C.0.68 D.0.875、下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,在的網(wǎng)格中,點(diǎn),,,,均在網(wǎng)格的格點(diǎn)上,下面結(jié)論正確的有(
)A.點(diǎn)是的外心 B.點(diǎn)是的外心C.點(diǎn)是的外心 D.點(diǎn)是的外心2、如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到B.點(diǎn)O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+3、下列說法不正確的是(
)A.經(jīng)過三個(gè)點(diǎn)有且只有一個(gè)圓B.經(jīng)過兩點(diǎn)的圓的圓心是這兩點(diǎn)連線的中點(diǎn)C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心4、如圖,AB是圓O的直徑,點(diǎn)G是圓上任意一點(diǎn),點(diǎn)C是的中點(diǎn),,垂足為點(diǎn)E,連接GA,GB,GC,GD,BC,GB與CD交于點(diǎn)F,則下列表述正確的是(
)A. B.C. D.5、如圖,為的直徑延長(zhǎng)線上的一點(diǎn),與相切,切點(diǎn)為,是上一點(diǎn),連接.已知,則下列結(jié)論正確的為(
)A.與相切 B.四邊形是菱形C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)對(duì)應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對(duì)稱軸是___________2、如圖,,,是上的三個(gè)點(diǎn),四邊形是平行四邊形,連接,,若,則_____.3、若某二次函數(shù)圖象的形狀與拋物線y=3x2相同,且頂點(diǎn)坐標(biāo)為(0,-2),則它的表達(dá)式為________.4、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長(zhǎng)為__.5、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計(jì)該種幼樹在此條件下移植成活的概率為_______.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖,一次函數(shù)y1=ax+b與反比例函數(shù)的圖象相交于A(2,8),B(8,2)兩點(diǎn),連接AO,BO,延長(zhǎng)AO交反比例函數(shù)圖象于點(diǎn)C.(1)求一次函數(shù)y1的表達(dá)式與反比例函數(shù)y2的表達(dá)式;(2)當(dāng)y1<y2,時(shí),直接寫出自變量x的取值范圍;(3)點(diǎn)P是x軸上一點(diǎn),當(dāng)時(shí),請(qǐng)求出點(diǎn)P的坐標(biāo).2、定義:我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.(1)如圖1,在四邊形中,,,對(duì)角線平分.求證:是四邊形的“相似對(duì)角線”;(2)如圖2,已知是四邊形的“相似對(duì)角線”,.連接,若的面積為,求的長(zhǎng).五、解答題(4小題,每小題10分,共計(jì)40分)1、正方形綠化場(chǎng)地?cái)M種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對(duì)稱或中心對(duì)稱圖案,下面是三種不同設(shè)計(jì)方案中的一部分.(1)請(qǐng)把圖①、圖②補(bǔ)成既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,并畫出一條對(duì)稱軸;(2)把圖③補(bǔ)成只是中心對(duì)稱圖形,并把中心標(biāo)上字母P.2、正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).(1)如圖①,若點(diǎn)E在上,F(xiàn)是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請(qǐng)說明理由;(3)如圖②,若點(diǎn)E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長(zhǎng).3、如圖所示,是⊙的一條弦,,垂足為,交⊙于點(diǎn),點(diǎn)在⊙上.()若,求的度數(shù).()若,,求的長(zhǎng).4、如圖,在△ABC是⊙O的內(nèi)接三角形,∠B=45°,連接OC,過點(diǎn)A作AD∥OC,交BC的延長(zhǎng)線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長(zhǎng).-參考答案-一、單選題1、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對(duì)各個(gè)選項(xiàng)逐個(gè)分析,即可得到答案【詳解】解:.方程無實(shí)數(shù)根,因此“方程有實(shí)數(shù)”是不可能事件,所以選項(xiàng)符合題意;B.買一張?bào)w育彩票可能中大獎(jiǎng),有可能不中,因此是隨機(jī)事件,所以選項(xiàng)B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項(xiàng)C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項(xiàng)D不符合題意;故選:.【點(diǎn)睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.2、A【解析】【分析】在⊙O取點(diǎn),連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點(diǎn),連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點(diǎn)】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對(duì)的圓心角是它所對(duì)的圓周角的2倍,掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長(zhǎng)是的正方體的表面展開圖的周長(zhǎng)一定是,是真命題,(4)設(shè)扇形半徑為r,圓心角為n,∵弧長(zhǎng)是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機(jī)抽取一個(gè)是真命題的概率是,故選C.【考點(diǎn)】本題考查了命題的真假,概率,扇形的弧長(zhǎng)和面積,無理數(shù),因式分解,正方體展開圖,知識(shí)點(diǎn)較多,難度一般,解題的關(guān)鍵是運(yùn)用所學(xué)知識(shí)判斷各個(gè)命題的真假.4、C【解析】【分析】先計(jì)算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計(jì)概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計(jì)抽查該地區(qū)一名九年級(jí)男生的身高不低于170cm的概率是0.68.故選:C.【考點(diǎn)】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.5、C【解析】【分析】根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念,對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;B.既不是軸對(duì)稱圖形,又不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;C.既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故本選項(xiàng)符合題意;D.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)不符合題意.故選:C.【考點(diǎn)】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.二、多選題1、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據(jù)三角形外心的定義可對(duì)四個(gè)選項(xiàng)進(jìn)行判斷.【詳解】解:如圖,連接HB、HD,根據(jù)勾股定理可得:,點(diǎn)是的外心,點(diǎn)是的外心,點(diǎn)是的外心,點(diǎn)是的外心,∴ABCD都是正確的.故選:ABCD.【考點(diǎn)】本題考查了三角形的外心和勾股定理的應(yīng)用,熟練掌握三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等是解決本題的關(guān)鍵.2、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點(diǎn)O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,同理可得:故符合題意;故選:【考點(diǎn)】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.3、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質(zhì)求解即可;D.根據(jù)三角形外心的性質(zhì)求解即可;【詳解】解:A、如果三個(gè)點(diǎn)在一條直線上,不存在經(jīng)過這三個(gè)點(diǎn)的圓,故選項(xiàng)錯(cuò)誤,符合題意;B、經(jīng)過兩點(diǎn)的圓的所有圓心在兩點(diǎn)連線的垂直平分線上,不僅僅是這兩點(diǎn)連線的中點(diǎn),故選項(xiàng)錯(cuò)誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點(diǎn),在三角形外部,選項(xiàng)正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點(diǎn),不是其中心,故選項(xiàng)錯(cuò)誤,符合題意;故選:ABD.【考點(diǎn)】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識(shí),解題的關(guān)鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.4、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對(duì)等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對(duì)應(yīng)相等,∴不能證得,故B不正確;∵點(diǎn)C是的中點(diǎn),∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點(diǎn)C是的中點(diǎn),∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點(diǎn)】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.5、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項(xiàng)所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點(diǎn)為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項(xiàng)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點(diǎn)】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識(shí),熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.三、填空題1、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對(duì)稱性和表格中的數(shù)據(jù),可以計(jì)算出該函數(shù)圖象的對(duì)稱軸.【詳解】解:由表格可得,當(dāng)x取-3和-1時(shí),y值相等,該函數(shù)圖象的對(duì)稱軸為直線,故答案為:.【考點(diǎn)】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對(duì)稱性解答.2、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對(duì)角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點(diǎn)】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握?qǐng)A周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.3、y=3x2-2或y=-3x2-2【解析】【分析】根據(jù)二次函數(shù)的圖象特點(diǎn)即可分類求解.【詳解】二次函數(shù)的圖象與拋物線y=3x2的形狀相同,說明它們的二次項(xiàng)系數(shù)的絕對(duì)值相等,故本題有兩種可能,即y=3x2-2或y=-3x2-2.故答案為y=3x2-2或y=-3x2-2.【考點(diǎn)】此題主要考查二次函數(shù)的圖象,解題的關(guān)鍵是熟知二次函數(shù)形狀相同,二次項(xiàng)系數(shù)的絕對(duì)值相等.4、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長(zhǎng)公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長(zhǎng)公式.5、0.880【分析】大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計(jì)這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.四、簡(jiǎn)答題1、(1),;(2)當(dāng)y1<y2,時(shí),自變量x的取值范圍為x>8或0<x<2;(3)點(diǎn)P的坐標(biāo)為(3,0)或(-3,0).【解析】【分析】(1)利用待定系數(shù)法確定解析式即可;(2)利用數(shù)形結(jié)合的思想,分析兩個(gè)函數(shù)圖象的位置,根據(jù)交點(diǎn)的橫坐標(biāo)確定滿足條件的解集即可.(3)先利用分割法求出的面積,利用求出的面積,由面積公式列式求解即可.【詳解】解:(1)將,代入中,得解得:∴反比例函數(shù)y2的表達(dá)式為:將,代入中,得:解得:∴一次函數(shù)y1的表達(dá)式為:(2)由圖象可知,當(dāng)時(shí),反比例函數(shù)圖象應(yīng)在一次函數(shù)圖象上方∴自變量x的取值范圍為:或(3)設(shè)直線AB與x軸的交點(diǎn)為D,如下圖:∵延長(zhǎng)AO交反比例函數(shù)圖象于點(diǎn)C∴點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)對(duì)稱∴設(shè)直線AB交x軸的交點(diǎn)為D將代入∴∴又∵∴即:∴∵點(diǎn)P在x軸上∴或【考點(diǎn)】本題考查待定系數(shù)法求一次函數(shù)與反比例函數(shù)的解析式,通過圖象交點(diǎn)情況確定滿足條件的自變量取值范圍等知識(shí)點(diǎn),能夠利用數(shù)形結(jié)合思想是解題的關(guān)鍵.2、(1)見解析;(2)【解析】【分析】(1)根據(jù)所給的相似對(duì)角線的證明方法證明即可;(2)由題可證的,得到,過點(diǎn)E作,可得出EQ,根據(jù)即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對(duì)角線”.(2)∵是四邊形EFGH的“相似對(duì)角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過點(diǎn)E作,垂足為.則.∵,∴,∴,∴,∴.【考點(diǎn)】本題主要考查了四邊形綜合知識(shí)點(diǎn),涉及了相似三角形,解直角三角形等知識(shí),準(zhǔn)確分析并能靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.五、解答題1、(1)見解析(2)見解析【分析】(1)根據(jù)軸對(duì)稱圖形,中心對(duì)稱圖形的性質(zhì)畫出圖形即可.(2)根據(jù)中心對(duì)稱圖形的定義畫出圖形即可.(1)解:圖形如圖①②所示.(2)解:圖形如圖③所示,點(diǎn)P即為所求作.【點(diǎn)睛】本題考查利用旋轉(zhuǎn)變換設(shè)計(jì)圖案,正方形的性質(zhì),軸對(duì)稱圖形,中心對(duì)稱圖形等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問題.2、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點(diǎn)共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計(jì)算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點(diǎn)共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職高爾夫服務(wù)實(shí)踐(服務(wù)實(shí)踐)試題及答案
- 2025年高職第一學(xué)年(大數(shù)據(jù)技術(shù))數(shù)據(jù)挖掘技術(shù)試題及答案
- 2025年大學(xué)第二學(xué)年(食品科學(xué)與工程)食品微生物學(xué)試題及答案
- 國(guó)開電大??啤豆芾韺W(xué)基礎(chǔ)》期末紙質(zhì)考試總題庫(kù)2026珍藏版
- 神經(jīng)癥心理科普
- 2025年KOX立體矩陣經(jīng)營(yíng)白皮書
- 2026上半年河南鄭州理工職業(yè)學(xué)院招聘9人備考題庫(kù)及一套參考答案詳解
- 2026年福建莆田市霞林學(xué)校初中部教師招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 社戒社康禁毒培訓(xùn)課件
- 2026年河北滄州市人民醫(yī)院選聘高層次人才49名備考題庫(kù)及一套完整答案詳解
- 交通運(yùn)輸安全檢查與處理規(guī)范(標(biāo)準(zhǔn)版)
- UCL介紹教學(xué)課件
- 木工電鋸使用規(guī)范制度
- 骨科跟骨骨折課件
- 2026年美團(tuán)商業(yè)分析師崗位筆試解析與面試問答技巧
- 某高校十五五教育大數(shù)據(jù)治理中心與智慧校園支撐平臺(tái)建設(shè)方案
- 2026年山西警官職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考試題帶答案解析
- (2026春新版)人教版二年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 《軍用關(guān)鍵軟硬件自主可控產(chǎn)品名錄》(2025年v1版)
- 食材配送投標(biāo)服務(wù)方案
- 大學(xué)生心理健康教育全套課件
評(píng)論
0/150
提交評(píng)論