2024浙江省建德市中考數(shù)學(xué)??键c(diǎn)試卷及答案詳解1套_第1頁(yè)
2024浙江省建德市中考數(shù)學(xué)常考點(diǎn)試卷及答案詳解1套_第2頁(yè)
2024浙江省建德市中考數(shù)學(xué)??键c(diǎn)試卷及答案詳解1套_第3頁(yè)
2024浙江省建德市中考數(shù)學(xué)??键c(diǎn)試卷及答案詳解1套_第4頁(yè)
2024浙江省建德市中考數(shù)學(xué)??键c(diǎn)試卷及答案詳解1套_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省建德市中考數(shù)學(xué)??键c(diǎn)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,AB為的直徑,,,劣弧BC的長(zhǎng)是劣弧BD長(zhǎng)的2倍,則AC的長(zhǎng)為()A. B. C.3 D.2、如圖,,是上直徑兩側(cè)的兩點(diǎn).設(shè),則(

)A. B. C. D.3、用配方法解方程時(shí),原方程應(yīng)變形為(

)A. B. C. D.4、把拋物線的圖象向左平移1個(gè)單位,再向上平移2個(gè)單位,所得的拋物線的函數(shù)關(guān)系式是(

)A. B. C. D.5、把7個(gè)同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、已知拋物線上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對(duì)應(yīng)值如表所示,對(duì)于下列結(jié)論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對(duì)稱軸為直線;③方程的兩根為0和2;④當(dāng)時(shí),x的取值范圍是或.正確的是(

)A.① B.② C.③ D.④2、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點(diǎn).下列結(jié)論中正確的是(

)A.拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)是B.C.若拋物線經(jīng)過點(diǎn),則關(guān)于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個(gè)單位,則新拋物線的表達(dá)式為3、下列命題中不正確的命題有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=34、下列圖案中,是中心對(duì)稱圖形的是(

)A. B. C. D.5、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當(dāng)x<1時(shí),y隨x的增大而減小B.若圖象與x軸有交點(diǎn),則a≥-4C.當(dāng)a=3時(shí),不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個(gè)單位,再向左平移3個(gè)單位后過點(diǎn)(1,-2),則a=-3第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如果一個(gè)扇形的弧長(zhǎng)等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個(gè)“完美扇形”的周長(zhǎng)等于6,那么這個(gè)扇形的面積等于_____.2、如圖,PA,PB是的切線,切點(diǎn)分別為A,B.若,,則AB的長(zhǎng)為______.3、將二次函數(shù)化成一般形式,其中二次項(xiàng)系數(shù)為________,一次項(xiàng)系數(shù)為________,常數(shù)項(xiàng)為________.4、如圖,與x軸交于、兩點(diǎn),,點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),PD切于點(diǎn)D,則△ABD的面積的最大值是________;線段PD的最小值是________.5、AB是的直徑,點(diǎn)C在上,,點(diǎn)P在線段OB上運(yùn)動(dòng).設(shè),則x的取值范圍是________.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸為.求的值及拋物線與軸的交點(diǎn)坐標(biāo);若拋物線與軸有交點(diǎn),且交點(diǎn)都在點(diǎn),之間,求的取值范圍.2、如圖所示,在銳角中,,,所對(duì)的邊分別是a,b,c,求證:.五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長(zhǎng)線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長(zhǎng).2、為增加農(nóng)民收入,助力鄉(xiāng)村振興.某駐村干部指導(dǎo)農(nóng)戶進(jìn)行草莓種植和銷售,已知草莓的種植成本為8元/千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),今年五一期間草莓的銷售量y(千克)與銷售單價(jià)x(元/千克)(8≤x≤40)滿足的函數(shù)圖象如圖所示.(1)根據(jù)圖象信息,求y與x的函數(shù)關(guān)系式;(2)求五一期間銷售草莓獲得的最大利潤(rùn).3、已知P為⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。4、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動(dòng)點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動(dòng).P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時(shí),PQ與⊙O相切?-參考答案-一、單選題1、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長(zhǎng),勾股定理的逆定理證明,根據(jù)弧長(zhǎng)關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對(duì)的圓周角是90度,勾股定理,等邊三角形的判定,求得的長(zhǎng)是解題的關(guān)鍵.2、D【解析】【分析】先利用直徑所對(duì)的圓周角是直角得到∠ACB=90°,從而求出∠BAC,再利用同弧所對(duì)的圓周角相等即可求出∠BDC.【詳解】解:∵C,D是⊙O上直徑AB兩側(cè)的兩點(diǎn),∴∠ACB=90°,∵∠ABC=25°,∴∠BAC=90°-25°=65°,∴∠BDC=∠BAC=65°,故選:D.【考點(diǎn)】本題考查了圓周角定理的推論,即直徑所對(duì)的圓周角是90°和同弧或等弧所對(duì)的圓周角相等,解決本題的關(guān)鍵是牢記相關(guān)概念與推論,本題蘊(yùn)含了屬性結(jié)合的思想方法.3、D【解析】【分析】移項(xiàng),配方,變形后即可得出選項(xiàng).【詳解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故選:D.【考點(diǎn)】本題考查了解一元二次方程,能夠正確配方是解此題的關(guān)鍵.4、A【解析】【分析】求出原拋物線的頂點(diǎn)坐標(biāo),再根據(jù)向左平移橫坐標(biāo)減,向上平移縱坐標(biāo)加求出平移后的拋物線的頂點(diǎn)坐標(biāo),然后利用頂點(diǎn)式解析式寫出即可.【詳解】解:∵拋物線的頂點(diǎn)坐標(biāo)為(2,1),∴向左平移1個(gè)單位,再向上平移2個(gè)單位后的頂點(diǎn)坐標(biāo)是(1,3)∴所得拋物線解析式是.故選:A.【考點(diǎn)】本題考查了二次函數(shù)圖象的平移,利用頂點(diǎn)的變化確定拋物線解析式的變化更簡(jiǎn)便.5、C【分析】利用俯視圖,寫出符合題意的小正方體的個(gè)數(shù),即可判斷.【詳解】A、當(dāng)7個(gè)小正方體如圖分布時(shí),符合題意,本選項(xiàng)不符合題意.B、當(dāng)7個(gè)小正方體如圖分布時(shí),符合題意,本選項(xiàng)不符合題意.C、沒有符合題意的幾何圖形,本選項(xiàng)符合題意.D、當(dāng)7個(gè)小正方體如圖分布時(shí),符合題意,本選項(xiàng)不符合題意.故選:C.【點(diǎn)睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學(xué)生的空間想象力和抽象思維能力.二、多選題1、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對(duì)稱軸,此時(shí)有最小值,與x軸交點(diǎn)坐標(biāo)為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點(diǎn)坐標(biāo)結(jié)合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對(duì)稱軸是直線x=1,頂點(diǎn)坐標(biāo)為(1,﹣1),此時(shí)有最小值∴函數(shù)與x軸的交點(diǎn)為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯(cuò)誤;拋物線y=ax2+bx+c的對(duì)稱軸為直線x=1故②錯(cuò)誤;方程ax2+bx+c=0的根為0和2故③正確;當(dāng)y>0時(shí),x的取值范圍是x<0或x>2故④正確;故選CD.【考點(diǎn)】本題考查了二次函數(shù)的圖象和性質(zhì).解題的關(guān)鍵在于根據(jù)表格獲取正確的信息.2、ABD【解析】【分析】結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)進(jìn)行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項(xiàng)正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當(dāng)y=0時(shí),方程的根為-1和3,∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),即A項(xiàng)正確;將點(diǎn)(-3,m)代入到拋物線方程,可得m=12a,∵結(jié)合k=-4a,∴方程,化簡(jiǎn)為:,∵a<0,∴,即,顯然方程無實(shí)數(shù)解,故C項(xiàng)說法錯(cuò)誤;向左平移3個(gè)單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點(diǎn)】本題考查了拋物線的性質(zhì)與圖象的知識(shí),解答本題時(shí)需注重運(yùn)用數(shù)形結(jié)合的思想.3、ABCD【解析】【分析】根據(jù)方程、方程的解的有關(guān)定義以及解方程等知識(shí)點(diǎn)逐項(xiàng)判斷即可.【詳解】解:A.方程kx2?x?2=0當(dāng)k≠0時(shí)才是一元二次方程,故錯(cuò)誤;B.x=1與方程x2=1不是同解方程,故錯(cuò)誤;C.方程x2=x與方程x=1不是同解方程,故錯(cuò)誤;D.由(x+1)(x?1)=3可得x=±2,故錯(cuò)誤.故選:ABCD.【考點(diǎn)】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識(shí)點(diǎn),掌握解一元二次方程的方法是解答本題的關(guān)鍵.4、ABD【解析】【分析】在平面內(nèi),把一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個(gè)圖形重合,這個(gè)圖形就是中心對(duì)稱圖形,根據(jù)定義判斷即可.【詳解】、是中心對(duì)稱圖形,選項(xiàng)正確;B、是中心對(duì)稱圖形,選項(xiàng)正確;C、不是中心對(duì)稱圖形,選項(xiàng)錯(cuò)誤;D、是中心對(duì)稱圖形,選項(xiàng)正確.故選:ABD【考點(diǎn)】本題考查中心對(duì)稱圖形的定義,牢記定義是解題關(guān)鍵.5、ACD【解析】【分析】A、此函數(shù)在對(duì)稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點(diǎn),就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對(duì)稱軸:直線x=2,A、當(dāng)x<1時(shí),y隨x的增大而減小,故該選項(xiàng)正確;B、當(dāng)Δ=b2?4ac=16?4a≥0,即a≤4時(shí),二次函數(shù)和x軸有交點(diǎn),該選項(xiàng)錯(cuò)誤;C、當(dāng)a=3時(shí),則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項(xiàng)正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個(gè)單位,再向左平移3個(gè)單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項(xiàng)正確.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點(diǎn)的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.三、填空題1、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長(zhǎng)等于6,∴半徑r為=2,弧長(zhǎng)l為2,這個(gè)扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個(gè)曲邊三角形,把弧長(zhǎng)l看成底,R看成底邊上的高即可.2、3【分析】由切線長(zhǎng)定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點(diǎn)睛】本題考查了等邊三角形的判定和切線長(zhǎng)定理,解題的關(guān)鍵是作出相應(yīng)輔助線.3、

【解析】【分析】通過去括號(hào),移項(xiàng),可以把方程化成二次函數(shù)的一般形式,然后確定二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng).【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項(xiàng)系數(shù)為﹣2;一次項(xiàng)系數(shù)為8;常數(shù)項(xiàng)為﹣8.故答案為﹣2,8,﹣8.【考點(diǎn)】本題考查的是二次函數(shù)的一般形式,通過去括號(hào),移項(xiàng),合并同類項(xiàng),得到二次函數(shù)的一般形式,確定二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)的值.4、【分析】根據(jù)題中點(diǎn)的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長(zhǎng)為底,點(diǎn)D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點(diǎn),根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點(diǎn)P到如圖位置時(shí),的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長(zhǎng)為底,點(diǎn)D在圓上,高最大為圓的半徑,如圖所示:此時(shí)面積的最大值為:;如圖所示:連接AP,∵PD切于點(diǎn)D,∴,∴,設(shè)點(diǎn),在中,,,∴,在中,,∴,則,當(dāng)時(shí),PD取得最小值,最小值為,故答案為:①;②.【點(diǎn)睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.5、【分析】分別求出當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)x的值,即可得到取值范圍.【詳解】解:當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),∵OA=OC,∴,即;當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),∵AB是的直徑,∴,∴x的取值范圍是.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),直徑所對(duì)的圓周角是直角的性質(zhì),正確理解點(diǎn)P的運(yùn)動(dòng)位置是解題的關(guān)鍵.四、簡(jiǎn)答題1、(1)a=-1;坐標(biāo)為,;(2).【解析】【分析】(1)利用拋物線的對(duì)稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點(diǎn)坐標(biāo);(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當(dāng)x=1時(shí),y<0,即-1-2+m<0;當(dāng)x=-1時(shí),y≥0,即-1+2+m≥0,然后解兩個(gè)不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當(dāng)時(shí),,解得,,所以拋物線與軸的交點(diǎn)坐標(biāo)為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對(duì)稱軸為直線,∵拋物線與軸的交點(diǎn)都在點(diǎn),之間,∴當(dāng)時(shí),,即,解得;當(dāng)時(shí),,即,解得,∴的取值范圍為.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)圖象的幾何變換.2、見解析【解析】【分析】方法1:過點(diǎn)A作于點(diǎn)D,根據(jù),可得,由此可得,由此可得結(jié)論;方法2:過點(diǎn)A作于點(diǎn)D,根據(jù)可得,由此可表示三角形的面積,根據(jù)面積相等可得相應(yīng)等式,由此可得結(jié)論;方法3:作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD,根據(jù)圓周角定理可得,由此可得結(jié)論.【詳解】解:方法1如圖所示,過點(diǎn)A作于點(diǎn)D,則,在中,,∴,在中,,∴,∴,∴.同理可證,.∴.方法2如圖所示,過點(diǎn)A作于點(diǎn)D,則,在中,在中,,∴,∴,同理可得,∴,∴,∴,∴.方法3如圖所示,作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD.∵BD是的直徑,∴.∴,∴,同理可得,.∴.五、解答題1、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點(diǎn)M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點(diǎn)O為AB的中點(diǎn),∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長(zhǎng)度為.【點(diǎn)睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.2、(1);(2)最大利潤(rùn)為3840元【解析】【分析】(1)分為8≤x≤32和32<x≤40求解析式;(2)根據(jù)“利潤(rùn)=(售價(jià)?成本)×銷售量”列出利潤(rùn)的表達(dá)式,在根據(jù)函數(shù)的性質(zhì)求出最大利潤(rùn).【詳解】解:(1)當(dāng)8≤x≤32時(shí),設(shè)y=kx+b(k≠0),則,解得:,∴當(dāng)8≤x≤32時(shí),y=?3x+216,當(dāng)32<x≤40時(shí),y=120,∴;(2)設(shè)利潤(rùn)為W,則:當(dāng)8≤x≤32時(shí),W=(x?8)y=(x?8)(?3x+216)=?3(x?40)2+3072,∵開口向下,對(duì)稱軸為直線x=40,∴當(dāng)8≤x≤32時(shí),W隨x的增大而增大,∴x=32時(shí),W最大=2880,當(dāng)32<x≤40時(shí),W=(x?8)y=120(x?8)=120x?960,∵W隨x的增大而增大,∴x=40時(shí),W最大=3840,∵3840>2880,∴最大利潤(rùn)為3840元.【考點(diǎn)】點(diǎn)評(píng):本題以利潤(rùn)問題為背景,考查了待定系數(shù)法求一次函數(shù)的解析式、分段函數(shù)的表示、二次函數(shù)的性質(zhì),本題解題的時(shí)候要注意分段函數(shù)對(duì)應(yīng)的自變量x的取值范圍和函數(shù)的增減性,先確定函數(shù)的增減性,才能求得利潤(rùn)的最大值.3、(1);(2)α+2β=90°,見解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內(nèi)角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=,∴⊙O的半徑為;(2)α+2β=90°,證明:連接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【點(diǎn)評(píng)】本題考查了圓周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論