重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試卷(解析版含答案)_第1頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試卷(解析版含答案)_第2頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試卷(解析版含答案)_第3頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試卷(解析版含答案)_第4頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試試卷(解析版含答案)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列黑體字中,屬于軸對稱圖形的是(

)A.善 B.勤 C.健 D.樸2、如圖,在Rt△ABC中,∠ABC=90°,分別以點A和點B為圓心,大于AB的長為半徑作弧相交于點D和點E,直線DE交AC于點F,交AB于點G,連接BF,若BF=3,AG=2,則BC=()A.5 B.4 C.2 D.23、北京2022年冬奧會會徽如圖所示,組成會徽的四個圖案中是軸對稱圖形的是(

)A. B. C. D.4、如圖,已知鈍角△ABC,依下列步驟尺規(guī)作圖,并保留作圖痕跡.步驟1∶以C為圓心,CA為半徑畫?、伲徊襟E2∶以B為圓心,BA為半徑畫?、?,交?、儆邳cD;步驟3∶連接AD,交BC延長線于點H.下列敘述正確的是(

)A.BH垂直平分線段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD5、如圖,等邊的頂點,,規(guī)定把等邊“先沿軸翻折,再向左平移1個單位”為一次變換,這樣連續(xù)經(jīng)過2021次變換后,頂點C的坐標為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,∠A+∠B=∠C,且AB=2BC,∠B=_________.2、如圖,在中,,,以點為圓心,長為半徑作弧,交射線于點,連接,則的度數(shù)是______.3、如圖,在△ABC中,AD⊥BC,垂足為點D,CE是邊AB上的中線,如果CD=BE,∠B=40°,那么∠BCE=_____度.4、如圖,在銳角中,,,平分,、分別是、上的動點,則的最小值是______.5、如圖,,,若,則線段長為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在平面直角坐標系中,的頂點,,均在正方形網(wǎng)格的格點上.(1)畫出關(guān)于x軸的對稱圖形;(2)將,沿軸方向向左平移3個單位、再沿軸向下平移1個單位后得到,寫出,,頂點的坐標.2、如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.(1)求∠F的度數(shù);(2)若CD=2,求DF的長.3、如圖,中,,D,E,F(xiàn)分別為AB,BC,CA上的點,且,.(1)求證:≌;(2)若,求的度數(shù).4、某班舉行文藝晚會,桌子擺成兩條直線(),桌面上擺滿了橘子,桌面上擺滿了糖果,坐在C處的小明先拿橘子再拿糖果,然后回到座位,請你幫他設(shè)計路線,使其行走的總路程最短.(保留作圖痕跡)5、如圖,是邊長為2的等邊三角形,是頂角為120°的等腰三角形,以點為頂點作,點、分別在、上.(1)如圖①,當時,則的周長為______;(2)如圖②,求證:.-參考答案-一、單選題1、A【解析】【分析】軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據(jù)軸對稱圖形的定義可得答案.【詳解】解:由軸對稱圖形的定義可得:善是軸對稱圖形,勤,健,樸三個字都不是軸對稱圖形,故符合題意,不符合題意,故選:【考點】本題考查的是軸對稱圖形的含義,軸對稱圖形的識別,掌握定義,確定對稱軸是解題的關(guān)鍵.2、C【解析】【分析】利用線段垂直平分線的性質(zhì)得到,,再證明,利用勾股定理即可解決問題.【詳解】解:由作圖方法得垂直平分,∴,,∴,∵,∴,,∴,∴,∴,∴,,∴.故選:.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)方法是解題關(guān)鍵,同時還考查了線段垂直平分線的性質(zhì).3、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】A,B,C都不是軸對稱圖形,故不符合題意;D是軸對稱圖形,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解定義是解題的關(guān)鍵.4、A【解析】【詳解】解:A.如圖連接CD、BD,∵CA=CD,BA=BD,∴點C、點B在線段AD的垂直平分線上,∴直線BC是線段AD的垂直平分線,故A正確,符合題意;B.CA不一定平分∠BDA,故B錯誤,不符合題意;C.應(yīng)該是S△ABC=?BC?AH,故C錯誤,不符合題意;D.根據(jù)條件AB不一定等于AD,故D錯誤,不符合題意.故選A.5、D【解析】【分析】先求出點C坐標,第一次變換,根據(jù)軸對稱判斷出點C變換后在x軸下方然后求出點C縱坐標,再根據(jù)平移的距離求出點C變換后的橫坐標,最后寫出第一次變換后點C坐標,同理可以求出第二次變換后點C坐標,以此類推可求出第n次變化后點C坐標.【詳解】∵△ABC是等邊三角形AB=3-1=2∴點C到x軸的距離為1+,橫坐標為2∴C(2,)由題意可得:第1次變換后點C的坐標變?yōu)?2-1,),即(1,),第2次變換后點C的坐標變?yōu)?2-2,),即(0,)第3次變換后點C的坐標變?yōu)?2-3,),即(-1,)第n次變換后點C的坐標變?yōu)?2-n,)(n為奇數(shù))或(2-n,)(n為偶數(shù)),∴連續(xù)經(jīng)過2021次變換后,等邊的頂點的坐標為(-2019,),故選:D.【考點】本題考查了利用軸對稱變換(即翻折)和平移的特點求解點的坐標,在求解過程中找到規(guī)律是關(guān)鍵.二、填空題1、60°【解析】【分析】利用三角形內(nèi)角和定理求得∠C=90°,在Rt△ACB中,AB=2BC推出∠A=30°,從而得出∠B的度數(shù).【詳解】根據(jù)三角形的內(nèi)角和定理得,∠A+∠B+∠C=180°,∵∠A+∠B=∠C,∴∠C+∠C=180°,解得∠C=90°,在Rt△ACB中,∵AB=2BC,∴∠A=30°,∴∠B=90°-30°=60°.故答案為:60°.【考點】本題考查了三角形內(nèi)角和定理的應(yīng)用,含30度角的直角三角形的性質(zhì),靈活運用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.2、10°或100°【解析】【分析】分兩種情況畫圖,由作圖可知得,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理解答即可.【詳解】解:如圖,點即為所求;在中,,,,由作圖可知:,,;由作圖可知:,,,,.綜上所述:的度數(shù)是或.故答案為:或.【考點】本題考查了作圖復雜作圖,三角形內(nèi)角和定理,等腰三角形的判定與性質(zhì),解題的關(guān)鍵是掌握基本作圖方法.3、20.【解析】【分析】連接ED,再加上AD⊥BC,利用直角三角形斜邊上的中線等于斜邊的一半,很容易可以推出△ECD為等腰三角形,根據(jù)等腰三角形的性質(zhì):等邊對等角,以及外角性質(zhì)即可求出∠BCE的度數(shù).【詳解】如圖,連接ED,∵AD⊥BC,∴△ABD是直角三角形,∵CE是邊AB上的中線,∴ED=AB=BE,∴∠EDB=∠B=40°,又∵CD=BE,∴ED=CD,∴∠DEC=∠DCE,∵∠EDB是△DEC的外角,∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,∴∠DCE=∠EDB=20°,∵∠DCE即∠BCE,∴∠BCE=20°.【考點】本題考查的是直角三角形的性質(zhì),等腰三角形的性質(zhì),掌握直角三角形中,斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.4、4【解析】【分析】過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,再根據(jù)BC=8,∠ABC=30°,由直角三角形的性質(zhì)即可求出CE的長.【詳解】解:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,∵BD平分∠ABC,∴M′E=M′N′,∴M′N′+CM′=EM′+CM′=CE,則CE即為CM+MN的最小值,在Rt中,BC=8,∠ABC=30°,∴CM+MN的最小值是4.故答案為:4.【考點】本題考查的是軸對稱-最短路線問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,含有30°的直角三角形的性質(zhì)求解是解答此題的關(guān)鍵.5、8【解析】【分析】過點D作DH⊥AC于H,由等腰三角形的性質(zhì)可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性質(zhì)可證DH=CF,由“AAS”可證△DHE≌△FCE,可得EH=EC,即可求解.【詳解】解:如圖,過點D作DH⊥AC于H,在△DHE和△FCE中,故答案為8.【考點】本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.三、解答題1、(1)作圖見解析;(2)作圖見解析A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).【解析】【分析】(1)關(guān)于x軸的兩點橫坐標相同,縱坐標互為相反數(shù),分別畫出各點,然后順次進行連接得出圖形;(2)根據(jù)平移的法則畫出圖形,得出各點的坐標.【詳解】解:(1)、如圖所示:△A1B1C1,即為所求;(2)、如圖所示:△A2B2C2,即為所求,點A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5)【考點】本題考查了利用軸對稱變換作圖,利用平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu)準確找出對應(yīng)點的位置是解題的關(guān)鍵.2、(1)30°;(2)4.【解析】【分析】(1)根據(jù)平行線的性質(zhì)可得∠EDC=∠B=60°,根據(jù)三角形內(nèi)角和定理即可求解;(2)易證△EDC是等邊三角形,再根據(jù)直角三角形的性質(zhì)即可求解.【詳解】(1)∵△ABC是等邊三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等邊三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【考點】本題主要考查了運用三角形的內(nèi)角和算出角度,并能判定等邊三角形,會運用含30°角的直角三角形的性質(zhì).3、(1)證明見解析;(2)55°.【解析】【分析】(1)根據(jù)三角形外角的性質(zhì)可得到∠CEF=∠BDE,可證△BDE≌△CEF;(2)由(1)可得DE=FE,即△DEF是等腰三角形,由等腰三角形的性質(zhì)可求出∠B=70°,即∠DEF=∠B=70°,從而求出∠EDF的度數(shù).【詳解】(1)∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB=AC,∴∠C=∠B.又∵CE=BD,∴△BDE≌△CEF.(2)∵△BDE≌△CEF,∴DE=FE.∴△DEF是等腰三角形,∴∠EDF=∠EFD.∵AB=AC,∠A=40°,∴∠B=70°.∵∠DEF=∠B,∴∠DEF=70°,∴∠EDF=∠EFD=×(180°﹣70°)=55°.【考點】本題考查了等腰三角形的性質(zhì)和判定、三角形的外角與內(nèi)角的關(guān)系及全等三角形的判定及性質(zhì);證得三角形全等是正確解答本題的關(guān)鍵.4、見解析【解析】【分析】作點C關(guān)于直線AO的對稱點C′,點C關(guān)于直線OB的對稱點D′,連接C′D′交AO于M,交OB于N,則路線CM-MN-NC即為所求.【詳解】如圖所示,小明的行走路線為,此時所走的總路程為的長,總路程最短.【考點】本題考查了軸對稱-最短路線問題,作圖-應(yīng)用與設(shè)計作圖,首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.解題的關(guān)鍵是利用了軸對稱的性質(zhì),兩點之間線段最短的性質(zhì)求解.5、(1)4;(2)見解析【解析】【分析】(1)首先證明△BDM≌△CDN,進而得出△DMN是等邊三角形,∠BDM=∠CDN=30°,N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論