難點解析-人教版8年級數(shù)學上冊《全等三角形》專題攻克試卷(含答案詳解)_第1頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題攻克試卷(含答案詳解)_第2頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題攻克試卷(含答案詳解)_第3頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題攻克試卷(含答案詳解)_第4頁
難點解析-人教版8年級數(shù)學上冊《全等三角形》專題攻克試卷(含答案詳解)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、若△ABC≌△DEF,且△ABC的周長為20,AB=5,BC=8,則DF長為(

)A.5 B.8 C.7 D.5或82、如圖,已知,那么添加下列一個條件后,仍無法判定的是(

)A. B.C. D.3、如圖,若,則下列結論中不一定成立的是(

)A. B. C. D.4、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°5、某同學把一塊三角形的玻璃打碎成了3塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的方法是(

).A.帶①去 B.帶②去 C.帶③去 D.①②③都帶第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知AC與BF相交于點E,ABCF,點E為BF中點,若CF=8,AD=5,則BD=_____.2、如圖,已知△ABC≌△DBE,∠A=36°,∠B=40°,則∠AED的度數(shù)為_____.3、如圖,的三邊,,的長分別是10,15,20,其三條角平分線相交于點O,連接OA,OB,OC,將分成三個三角形,則等于__________.4、在ABC中,AB=AC,點D在BC上(不與點B,C重合).只需添加一個條件即可證明ABD≌ACD,這個條件可以是________(寫出一個即可)5、如圖,已知BE=DC,請?zhí)砑右粋€條件,使得△ABE≌△ACD:_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.2、在中,,直線經(jīng)過點C,且于D,于E,(1)當直線繞點C旋轉到圖1的位置時,顯然有:(不必證明);(2)當直線繞點C旋轉到圖2的位置時,求證:;(3)當直線MN繞點C旋轉到圖3的位置時,試問、、具有怎樣的等量關系?請直接寫出這個等量關系.3、如圖,已知:正方形,點,分別是,上的點,連接,,,且,求證:.4、已知如圖,E.F在BD上,且AB=CD,BF=DE,AE=CF,求證:AC與BD互相平分.5、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.-參考答案-一、單選題1、C【解析】【分析】根據(jù)三角形的周長可得AC長,然后再利用全等三角形的性質可得DF長.【詳解】∵△ABC的周長為20,AB=5,BC=8,∴AC=20?5?8=7,∵△ABC≌△DEF,∴DF=AC=7,故選C.【考點】此題主要考查了全等三角形的性質,關鍵是掌握全等三角形的對應邊相等.2、C【解析】【分析】根據(jù)三角形全等的判定方法求解即可.【詳解】解:A、∵,,,∴,選項不符合題意;B、∵,,,∴,選項不符合題意;C、∵由,,,∴無法判定,選項符合題意;D、∵,,,∴,選項不符合題意.故選:C.【考點】此題考查了三角形全等的判定方法,解題的關鍵是熟練掌握三角形全等的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).3、A【解析】【分析】根據(jù)翻三角形全等的性質一一判斷即可.【詳解】解:∵△ABC≌△ADE,∴AD=AB,AE=AC,BC=DE,∠ABC=∠ADE,∴∠BAD=∠CAE,∵AD=AB,∴∠ABD=∠ADB,∴∠BAD=180°-∠ABD-∠ADB,∴∠CDE=180°-∠ADB-ADE,∵∠ABD=∠ADE,∴∠BAD=∠CDE故B、C、D選項不符合題意,故選:A.【考點】本題考了三角形全等的性質,解題的關鍵是三角形全等的性質.4、D【解析】【分析】根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據(jù)三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.5、C【解析】【分析】根據(jù)三角形全等的判定定理判斷即可.【詳解】帶③去,理由如下:∵③中滿足ASA的條件,∴帶③去,故選C.【考點】本題考查了三角形全等的判定,熟練掌握三角形全等的判定定理是解題的關鍵.二、填空題1、3【解析】【分析】利用全等三角形的判定定理和性質定理可得結果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點E為BF中點,∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點】本題主要考查了全等三角形的判定定理和性質定理,熟練掌握定理是解答此題的關鍵.2、76°或76度【解析】【分析】根據(jù)全等三角形的性質得到∠A=∠D=36°,根據(jù)三角形的外角的性質即可得出答案.【詳解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案為:76°.【考點】本題考查了全等三角形的性質及三角形外角的性質,掌握全等三角形的對應角相等是解題的關鍵.3、2:3:4【解析】【分析】過點O分別向三邊作垂線段,通過角平分線的性質得到三條垂線段長度相等,再通過面積比等于底邊長度之比得到答案.【詳解】解:過點O分別向BC、BA、AC作垂線段交于D、E、F三點.∵CO、BO、AO分別平分∴∵,,∴故答案為:2:3:4【考點】本題考查了角平分線的性質,往三角形的三邊作垂線段并得到面積之比等于底之比是解題關鍵.4、∠BAD=∠CAD(或BD=CD)【解析】【分析】證明ABD≌ACD,已經(jīng)具備根據(jù)選擇的判定三角形全等的判定方法可得答案.【詳解】解:要使則可以添加:∠BAD=∠CAD,此時利用邊角邊判定:或可以添加:此時利用邊邊邊判定:故答案為:∠BAD=∠CAD或()【考點】本題考查的是三角形全等的判定,屬開放性題,掌握三角形全等的判定是解題的關鍵.5、∠B=∠C【解析】【分析】根據(jù)全等三角形的判定方法解答即可.【詳解】解:∵BE=DC,∠A=∠A,∴根據(jù)AAS,可以添加∠B=∠C,使得△ABE≌△ACD,故答案為:∠B=∠C.【考點】本題考查全等三角形的判定,解題的關鍵是熟練掌握全等三角形的判定方法,屬于中考??碱}型.三、解答題1、詳見解析【解析】【分析】過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),根據(jù)等角的補角相等可得出∠PAE=∠PBF,結合∠AEP=∠BFP、PA=PB即可證出△APE≌△BPF(AAS),根據(jù)全等三角形的性質可得出PE=PF,進而可證出OP平分∠AOB.【詳解】如圖,過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F(xiàn),則∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE與△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,PF⊥ON,∴OP平分∠AOB.【考點】本題考查了全等三角形的判定與性質以及角平分線的性質,利用全等三角形的判定定理AAS證出△APE≌△BPF是解題的關鍵.2、(1)見解析;(2)見解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質也可以解決問題;(3)當直線MN繞點C旋轉到圖(3)的位置時,仍然△ADC≌△CEB,然后利用全等三角形的性質可以得到DE=BE-AD.【詳解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如圖3,∵△ABC中,∠ACB=90°,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD-CE=BE-AD;DE、AD、BE之間的關系為DE=BE-AD.【考點】此題需要考查了全等三角形的判定與性質,也利用了直角三角形的性質,是一個探究性題目,對于學生的能力要求比較高.3、見解析.【解析】【分析】將△ABE繞點A逆時針旋轉90°得到△ADG,根據(jù)旋轉的性質可得GD=BE,AG=AE,∠DAG=∠BAE,然后求出∠FAG=∠EAF,再利用“邊角邊”證明△AEF和△AGF全等,根據(jù)全等三角形對應邊相等可得EF=FG,即可得出結論.【詳解】如解圖,將繞點逆時針旋轉至的位置,使與重合.∴,.∵.∴,∴.在和中,,∴.∴.∵,∴.【考點】本題考查了正方形的性質,旋轉的性質,全等三角形的判定與性質,難點在于利用旋轉變換作出全等三角形.4、見解析【解析】【分析】根據(jù)已知條件易證△ABE≌△DFC,由全等三角形的對應角相等可得∠B=∠D,再利用AAS證明△ABO≌△COD,所以AO=CO,BO=DO,即可證明AC與BD互相平分.【詳解】證明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC與BD互相平分.【考點】本題考查了全等三角形的判定與性質,解題關鍵是通過證明△ABE≌△DFC得∠B=∠D,為證明△ABO≌△COD提供條件.5、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論