版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025高考數(shù)學(xué)·魔鬼特訓(xùn)營(yíng)(-(-x≥0,x≤2,所以A=(-∞,2].對(duì)于函數(shù)y=、2-x,由于2-x≥0,所以y=2-x≥0,所以B=[0,+∞),所以A∩B=[0,2[.故選:B.【題4】A【解析】∵X={1,2,3,4},Y=∴X-Y={1,2},Y-X={5},∴(X-Y(∪(Y-X(={1,2,5},∴|(X-Y(∪(Y-X(|=3,故選:A.2+(a-4(x-2a≤0,即(2x+a((x-2(≤0,當(dāng)-≥2,即a≤-4時(shí),2≤x≤-,此時(shí)A∩B=?,不合題意;故<2,即a>-4時(shí),則B=≤x≤2,由于A={x∣-2≤x≤1},A∩B={x∣-1≤x≤1},所以-=-1,解得a=2,故選:C.-1,+a2<a1+a3<a1+a4<a2+a4<a3+a4,所以集合Y中至少有以上5個(gè)元素,則顯然x1x2<x1x3<x1x4<x1x5<x2x5<x3x5<x4x5,則集合S中至少有7個(gè)元素,對(duì)于C選項(xiàng)而言,?i≠j,xi≠xj,則與一定成對(duì)出現(xiàn),-1-1(<0,所以|T|一定是11-|-x+(-可得M?{x∣x≤3},{x∣x<0或x>1}∩{x∣x≤3}={x∣x<0或1<x≤3},C.不等式x2+ax-b<0的解集為(x1,x2(,x1x2=-b<0,故C錯(cuò)誤.|x1-x2|=41+x2=-a,x1x2=b-c,則|x1-x2|2=(x1+x2(2-4x1x2=a2 ∈N ∈N{所以Q={1,2,3,6},由Q={1,2,3,6},P={1,3,4},得U=P∪Q2+k(n1,n2∈Z(,22所以則有a-b=7(n1-n2(∈[0[,故正確;④當(dāng)a-b∈[0[時(shí),則a-b=7n3(n3∈Z(,+k(n4∈Z(2∈C,之積為-8.若m2=m,m2{2=-8.∴A∪B={x∣x≥2};(2)∵M(jìn)-N={x∣x∈M且x?N},A={x∣x≥2},B={x∣3<x<5},∴A-B={x∣2≤x≤3或x≥5}.2-2ax-3a2<0可化為x2-2x-3<0,得-1<x<3.2-2ax-3a2<0(a>0(,得-a<x<3a.∵q是p的充分不必要條件,a≥{.∴{x∣a≥{.3a≥4,{x∣0≤x≤5}=[0,5[,所以{U∪A∩B=[0,1).x+≥1,解得x≥或x≤-,所以A=(-∞,-∪,+∞(,5+3a(x+5a=(3x+5((x+a(<0,當(dāng)-a<-,即a>,-a<x<-;當(dāng)-a>-,即a<時(shí),-<x<-a,33又A=(-∞,-∪,+∞(,所以要使A∩B中包含2021個(gè)正整數(shù),則a<,B=(-,-a(,A∩B=(-,-|∪,-a(,所以a∈[-2022,-2021).,p(2)正整數(shù)集合A={a1,a2,?,an{(1≤a1<a2<?<an,n為正整數(shù),且n≥2)具有性質(zhì)P,即對(duì)任意的j(1≤i<j≤n,i、j均為正整數(shù)),兩數(shù)aiaj與中至少有一個(gè)屬ai都是an的因數(shù).j(1≤i≤j≤n(,aiaj與兩數(shù)中至少有一個(gè)屬于A44【題1】C【解析】因?yàn)锳={x|x2-4x-5<0{={x∣-1<x<5},B={-3,-1,1,3,5}所以A∩B={1,3}.故選:C.3x+18<0可化為x2-3x-18>0,即(x-6((x+3(>0,即x>6或x<-3.所以不等式的解集為{x∣x>6或x<-3}.故選:A.2-kx-k的值恒為正值,則Δ<0?k2+4k<0?-4<k<0,∵(-4,0(?(-5,0(,【題4】A【解析】因?yàn)镸=2a(a-2(+7,N=(a-2((a-3(,所以M-N=(2a2-4a+7(-(a2-5a+6(=a2+a+1=(a+2+>0,因?yàn)閥=(x-1(2+5在區(qū)間2,|為增函數(shù),55 min=-+1=1-≥0ra<0,{|則-1+3=-{|則a<0,即{ba<0,c=-3a,解得-<x<1,∴cx2-bx+a<0的解集為<x<1,D錯(cuò)誤;(t+3(ln(t+2(>(t+2(ln(t+3(,A正確;66所以(t+2(ln(t+1(>(t+1(ln(t+2(,所以(t+1(t+2>(t+2(t+1,B錯(cuò)誤;故g(x(在[2,+∞)上單調(diào)遞減,g(t+1(>g(t+2(,所以>故log(t+1((t+2(>log(t+2((t+3(,D正確;2+【題15】(-,+∞(【解析】因?yàn)椴坏仁?2a-b(x+所以x=是方程(2a-b(x+3a-4b=0的根,且2a-b<0,則不等式(a-4b(x+2a-3b>0,可化為-bx-b>0,-x-<0,解得x>-,即不等式(a-4b(x+2a-3b>0的解集為(-,+∞(.故答案為:(-,+∞(.72-(3m-2(x+2m2-m-3=0得,[x-(m+1([[x-(2m-3([=0,所以x=m+1或x=2m-3,r-5<m+1<4,-5<2m-3<4,得-1<m<3.所以實(shí)數(shù)m的取值范圍為{r-5<m+1<4,(2)設(shè)集合A={m∣-1<m<3},集合B={m∣1-a<m<1+a},1-a<1+a,當(dāng)B≠?時(shí),1-a<1+a,1+a≤3,或{1-a≥-1,1或{1-a≥-1,1+a<3,所以存在實(shí)數(shù)a∈(-∞,2(,滿足條件.所以-1和是方程ax2+bx-2a+5=0的兩個(gè)根,,∴2020年的利潤(rùn)y=1.5x×-8-16x-m=36--m(m≥0(.2<0的解集為(-1,2(,∴方程ax2+bx-2=0的兩根分別為-1和2,r-1+2r-1+2=-b|-1×2=-288解得,1,∴f(x(=x2-x-2,令x+1=x2-x-2,解得x=-1或x=3,作出M(x(的圖象如下圖所示:r2k-1|k+1>0,k>1或k<-1,∴{≤r2k-1|k+1>0,k>1或k<-1,(2)設(shè)發(fā)射點(diǎn)與飛行物之間的水平距離為a千米,要使炮彈能擊中飛行物,則ka-a2=3.2,即則必有正數(shù)解.a2≤∵-==<0,9∴點(diǎn)P(a+c,b+d(是點(diǎn)(c,d由上式對(duì)?m∈{t∣0<t<2019,t∈Z}恒成立.即n-<k<n-,3-x≥0-1<x≤3,3-x≥0【題2】A【解析】由題設(shè)M={x∣x≥1或x≤-1},N={y∣y≤0},所以M∩N=(-∞,-1].故選:A.rx+1,x≤0,-100,x>0,所以f=-100=0,所以f(t(=+1(t≠0(,因此f(x(=+1(x≠0(.故選:B.【題5】C【解析】函數(shù)f(x(為偶函數(shù),則f(-2(=f(2(,f(-3(=f(3(,則f(2(>f(3(>f(π(,則f(-2(>f(-3(>f(π(,故選:C.f(x+1(為奇函數(shù),即其圖象關(guān)于(0,0(點(diǎn)對(duì)稱(chēng),所以f(x(的圖象關(guān)于(1,0(點(diǎn)對(duì)稱(chēng),f(x+2(為偶函數(shù),即其圖象關(guān)于y軸對(duì)稱(chēng),因此f(x(的圖象所以f(1(=0,f(0(=-f(2(,f(3(=f(1(,所以f(1(=2a+b=0,f(0(+f(3(=-f(2(=-(4a+b(=所以x∈[1,2[時(shí),f(x(=-3?2x+6,由對(duì)稱(chēng)性得f(x+2(=f(2-x(=-f(1-(1-x((=-f(x(,所以f(x+4(=-f(x+2(=f(x(,f(x(是周f(log296(=f(log296-4(=f(4-log296+4(=f(log2=f(log2=-3×+6=-2,【題7】B【解析】由f(x+1(=2f(x(知:f(x(=2f(x-1(,∴f(x(=2kf(x-k((k∈Z(,當(dāng)x∈(0,1]時(shí),f(x(=x(x-1(=x2-x,則f(x(min=f=-;f(x(=2f(x-1(=2(x-1((x-2(=2x2-6x+4,則f(x(min=f=-;f(x(=4f(x-2(=4(x-2((x-3(=4x2-20x+24,則f(x(min=f=-1<-;作出函數(shù)f(x(的大致圖象如圖所示.∵f(x(≥-對(duì)任意x∈(-∞,m]恒成立,∴f(x(min≥-時(shí),m≤,由f(1-x(=f(1+x(得f(-x(=f(x+2(,所以f(x(+f(x+2(=2,f(x+1(+f(x+3(=2,即f(x(+f(x+1(+f(x+2(+f(x+3(=4,所以[f(-1(+f(0(+f(1(+f(2([+[f(3(+f(4(+?+f(2021(+f(2022([=4×506=2024,所以f(1(+f(2(+f(3(+?+f(2022(=2024-f(-1(-f(0(=2023.故選:A.-4a≥0?0<a≤4;由②,令x=y=0得f(0(=0,令x=-y得f(-x(=-f(x(,所以函數(shù)為奇函數(shù);故AB正確,C錯(cuò)誤;因?yàn)閒(x+1(-f(2-x(≤0?f(x+1(≤f(2-x(?x+1≤2-x,解得x≤,故D正確;所以x+y=[x[+a+[y[+b,[x+y[=[x[+[y[+[a+b],所以[x[+[y[≤[x+y[,即選項(xiàng)B正確;-1<[x[≤x,所以0≤x-[x[<1,所以函數(shù)f(x(=x-[x[的值域?yàn)閇0,1),t3[=1t5[=3,?,[tn[=n-2同時(shí)成立,nn-2≤t<nn-1,故選BCD.2y又奇函數(shù)f(x+2(是(-3,-1(上的減函數(shù),所以f(x(是(-1,1(上的奇函數(shù),且在(-1,1(上單調(diào)遞減.由f(m-1(+f(3-2m(<0,得f(m-1(<-f(3-2m(,所以f(m-1(<f(2m-3(,所以m-1>【題15】-2【解析】因?yàn)閒(x-2(以f(-x-2(=-f(x-2(,f(1-x(=f(1+x(,即f(-x-4(=-f(x(,f(2-x(=f(x(,所以f(-x-4(=-f(2-x(,f[-(-x+2(-4[=-f[2-(-x+2([,即f(x-6(=-f(x(,故f(x+6(=-f(x(,所以f(x+12(=f(x(,即周期為12.令x=0,由f(x+6(=-f(x(得f(6(=-f(0(,又f(0(-f(6(=4,得f(6(=-2,所以f(2034(=f(169×12+6(=f(6(=-2.故答案為:-2.2-18tb+4t2-1=0t(2-4×24×(4t2-x;(2)∵2>1,∴f(x(是增函數(shù),f(2m-1(-f(m+3(<0,即f(2m-1(<f(m+3(,<x21-x2<0,x1x2>0,f(x1(-f(x2(=(x1-x2-=(x1-x2(+-=(x1-x2(+所以f(x1(<f(x2(,所以f(x(在區(qū)間(0,+∞(上單調(diào)遞增.(2)不等式f(2x(≤m?2x-5在x∈(-∞,0(上恒成立,等價(jià)于-++1≤m在x∈(-∞,0(上恒則有m≥-2t2+5t+1在t∈(1,+∞(上恒成立,則s(t(=-2t2+5t+1=-2(t-2+,【題19】【解析】(1)∵f(x(滿足f(x(=f(x+2(,∴f(1(=f(2-1(=f(-1(=-f(1(,∴f(1(=0,f(-1(=0.由f(x(是奇函數(shù),∴f(x(=-f(-x(=-=-,x|4x+1,0<x<1,|--1<x<0.綜上,在x|4x+1,0<x<1,|--1<x<0.x+1,f(x(-g(x(=f(x(是奇函數(shù),g(x(為偶函數(shù),則f(-x(-g(-x(=,即-f(x(-g(x(=②,由①②得f(x(=,g(x(=.即g(x+5(<g(x-1(,(x+5(2+1(x-1(2+1(x+5(2+1(x-1(2+1,又定義域?yàn)閤∈(-∞,0(∪(0,1(∪(1,+∞x-1(+log2(x-2(>1,(x-1((x-2(>2,:{x(x-1((x-2(>2,x-2>0,:f(x(>1的解集為(3,+∞(.n,故0<a<1,:f(x(=loga(x-(x-a(L|Γ,而y=(x-(x-a(在x∈[m,n[上遞增,y=logax遞減,:f(x(在x∈[m,n[上遞減,故loga(m-(m-a(=logam,loga(n-(n-a(|=logan,:(m-(m-a(=m,n-(n-a(=n,即m,n是(x-(x-a(=x的兩個(gè)不同的實(shí)根,:g(x(=x2+1(x+在(a,+∞(上有m,n兩個(gè)不【題22】【解析】(1)“函數(shù)f(x(=ax-q.a-x(a>0且a≠1(是定義域?yàn)镽的奇函數(shù),代入原函數(shù),則有f(-x(=-f(x(,所以f(x(=ax-a-x,“f(1(=,:a-=,2a2-3a-2=0,解得a=2或a“a>0,:a=2,f(x(=2x-2-x,任取實(shí)數(shù)x1<x2,則f(x1(-f(x2(=2x-2-x-(2x-:f(x1(<f(x2(,:f(x(是單調(diào)增函數(shù);(2)g(x(=log(m-2([a2x+a-2x-mf(x(+1[=log(m-2([22x+2-2x-m(2x-2-x(+1[=log(m-2([(2x-2-x(2-m(2x-2-x(+3[,設(shè)t=2x-2-x,x-2-x(2-m(2x-2-x(+3=t2-mt+3,記h(t(=t2-mt+3,t(min=1,∴h(t(在,|上單調(diào)遞增,-x=1,所以f(0(=20-m=1-m=0,m=1,所以f(-2(=-f(2(=-(22-1(=-3.故選:C.【題3】B【解析】因?yàn)閥=lnx,y=-為(0,+∞(上的單調(diào)遞增函數(shù),因?yàn)閒(1(=ln1-=-3<0,f(2(=ln2-<0,f(3(=ln3->0ax在定義域(0,+∞(上單調(diào)遞增,【題5】D【解析】因?yàn)楹瘮?shù)f(x(是奇函數(shù),所以f(2-x(=-f(x-2(,因?yàn)閒(x(=f(2-x(,所以f(x(=-f(x-2(,所以f(x-2(=x-2,所以f(x(=-f(x-2(=2-x.故選:D.∴f(x(的圖象既有對(duì)稱(chēng)中心又有對(duì)稱(chēng)軸,但f(x(不一定具由f(-x(+f(x(=0,則f(x(為奇函數(shù),故選項(xiàng)A錯(cuò)誤;由f(x-1(=f(1-x(,可得函數(shù)f(x(圖象關(guān)于x=0對(duì)稱(chēng),故選項(xiàng)B錯(cuò)誤;∴f(2a+x(=f(-x(,f(-x(=-f(2b+x(,∴f(2a+x(=-f(2b+x(,∴f(2a+x-2b(=-f(2b+x-2b(=-f(x(,∴f(x+4a-4b(=-f(x+2a-2b(=f(x(,∴f(x(的一個(gè)周期T=4(a-b(,故選項(xiàng)C正確.故選:C.f(x(=,f(-x(=-f(x(,得f(x(為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱(chēng),當(dāng)a=-1,c=-1,即有f(x(=-(x≠±1(,f(-x(=-當(dāng)b=-1,c=-1,即有f(x(=-(x≠±1(,f(-x(=f(x(,可得f(x(為偶函數(shù),其圖象關(guān)于y軸f(x(有2個(gè)根,當(dāng)<t<時(shí),t=f(x(有6個(gè)根,故關(guān)于x的方程m[f(x([2+nf(x(+1=0恰有7個(gè)不同的實(shí)數(shù)根,則t1=,t2=需為mt2+nt+122=>y22-x,log2x=2-x,因?yàn)閒(x(=2x+x-2在R上單調(diào)遞增,+(2-a(2=2(a-1(2+2<a<1(,故選ABD.x=3y=z=t(t>1(,故選AC.所以y=ax+1(a>0,a≠1(恒過(guò)定點(diǎn)(-1,1(.故答案為:(-1,1(.-x,f(x(=-1=,f(x(>0,即當(dāng)x=1時(shí),f(x(取得極大值為f(1(=-1;當(dāng)x≤0時(shí),f(x(=-x-2為減函數(shù),且f(x(≥-2,函數(shù)f(x(的圖象如圖.設(shè)f(x1(=f(x2(=t,由題可知-2≤t≤-1,由f(x1(=t得-x1-2=t,則x1=-t-2,則x1f(x2(=t(-t-2(=-(t+1(2+1,∵-2≤t≤-1,∴當(dāng)t=-1時(shí),x1f(x2(取得最大值為1.故答案為:1.當(dāng)0<a<1時(shí),此時(shí)f(x(,g(x(遞減,g(x(在[3,4[上單調(diào)遞減,所以f(x1(min=f(2(=loga(9-a2(,g(x2(min=g(4(=loga(16-4a(,所以loga(9-a2(≥loga(16-4a(?9-a2≤16-當(dāng)1<a<3時(shí),由復(fù)合函數(shù)單調(diào)性可知f(x(在[1,2[上單調(diào)遞減,g(x(在[3,4[上單調(diào)遞增,所以f(x1(min=f(2(=loga(9-a2(,g(x2(min=g(3(=loga(9-3a(,所以loga(9-a2(≥loga(9-3a(?9-a2≥9-3a,即a當(dāng)x≤-2時(shí),g(x(=-x-x-2=-2x-2,當(dāng)-2<x<0時(shí),g(x(=-x+x+2=2,-∞,-2(,g(x(的值域?yàn)閇2,+∞).f(x(-2=-2=x+,-x(=-x=-g(x(,所以g(x(為奇函數(shù),當(dāng)a≠0時(shí),定義域?yàn)?-∞,0(∪(0,+∞(,且g(-x(=-x-=-g(x(,所以g(x(為奇函數(shù),即f(x(==x++2>0在x∈[整理為a>-x2-2x在x∈[1,+∞)上恒成立,令h(x(=-x2-2x=-(x+1(2+1,所以a>-3,故實(shí)數(shù)a的取值范圍為(-3,+∞(.∴可設(shè)y=mx(m>0,x>0(,∴生產(chǎn)A芯片的毛收入y(千萬(wàn)元)與投入的資金x(千萬(wàn)1,,∴生產(chǎn)B芯片的毛收入y(千萬(wàn)元)與投入的資金x(2)設(shè)對(duì)B芯片投入的資金為x千萬(wàn)元,則對(duì)A芯片投入的資金為(40-x(千萬(wàn)元,設(shè)凈利潤(rùn)為W千萬(wàn)則W=x+(40-x(-2(0<x<40(,千萬(wàn)元.-4m(實(shí)數(shù)m∈Z)的圖象關(guān)于y軸對(duì)稱(chēng),且f(2(>f(3(,所以f(x(在區(qū)間(0,+∞(上為單調(diào)遞減函數(shù),又由m∈Z,且函數(shù)f(x(=xm-4m(實(shí)數(shù)m∈Z)的圖象關(guān)于y軸對(duì)稱(chēng),所以m2-4m為偶數(shù),所以m=2,所以f(x(=x-4.解得-<a<或<a<3,x+x+x=,((2)假設(shè)存在實(shí)數(shù)a,使得f(x(與g(x(在區(qū)間[a+2,a+3[上是“友好”的,則|f(x(-g(x(|=|loga(x2-4ax+3a2(|≤1,即-1≤loga(x2-4ax+3a2(≤1,由復(fù)合函數(shù)的單調(diào)性可得y=loga(x2-4ax+3a2(在區(qū)間[a+2,a+3[上為減函數(shù),min=loga(9-6a(,解得0<a≤,當(dāng)<a<1時(shí),f(x(與g(x(在區(qū)間[a+2,a2-4≤0,得A={x∣-2≤x≤2},,(t(=4t+所以f(x(的單調(diào)增區(qū)間是(2,+∞(.故選:B.,(x(=3x2x3有“巧值點(diǎn)”;對(duì)于B選項(xiàng),f,(x(=-,由f(x(=f,(x(可得-lnx=0,其中x>0,對(duì)于C選項(xiàng),f,(x(=-e-x,由f(x(=f,(x(可得e-x=0,這與e-x>0矛盾,所以函數(shù)f(x(=e-x沒(méi)有對(duì)于D選項(xiàng),f,(x(=-cosx,因?yàn)閒=-=f,,所以函數(shù)f(x(=-sinx有“巧值點(diǎn)”.故f,(x(=3x2-4cx+c2=3(x-(x-c(,,(x(=3(x-(x-2(,,(x(>0,,(x(=3(x-2((x-6(,,(x(>0,(x(<0,所以f,(x(=3ax2+2(3a+1(x+4=(3ax+2((x+2(,故f(x(=-x3-2x2+4x.故選:B.f1(x(=2cos2x-2sin2x,所以f2022(x(=22022(-sin2x-cos2x(.故選B.令f(x(=x-lnx,x>1,則f(x(=1->0,函數(shù)f(x(在(1,+∞(上單調(diào)遞增,有f(x(>f(1(=1t(=<0,g(t(在(1,+∞(上單調(diào)遞減,根據(jù)平均變化率的概念可知若函數(shù)f(x(從x1到x2平均變化率即為割線AB的斜率,即AB的斜率,從而f(x0+△x(≈f(x0(+Δxf(x0(,確.【題10】BC【解析】因?yàn)閒(x(為R上的奇函數(shù),故f(-x(=-f(x(,所以-f(-x(=-f(x(,即f(-x(=f(x(,所以f(x(為偶函數(shù),又f(-2(=-f(2(,由圖可得f(2(>2,f(1(=2,故f(-2(<-2,故A錯(cuò)誤.而f(-1(?f(-2(=-f(1(×[-f(2([=f(1(?f(2(>2×2=4,故B正確.f(-1(?f(-2(=f(1(?f(2(,由圖可得f(1(>0,f(2(<0,故f(-1(?f(-2(<0,所以C正確.因?yàn)閒(x(=3x2-6=3(x+、2((x-、2(,所以當(dāng)x∈(-∞,-、2(時(shí),f(x(>0;f(x(>0,C正確.∴f(x(+、2sinx,又函數(shù)f(x(=-1(-、2cosx在區(qū)間(0,的最小值為-1,又f=a(e--1(-、2cos=-1,可得原條件的一個(gè)必要條件f=0,令g(x(=-e=-e,f=-e-、2>0,∴函數(shù)f(x(在區(qū)間(0,的最小值為f=-1,∵f(x(=-e+、2sinx,又f點(diǎn)x0,f(x0(=0-1(-、2cosx0=、2sinx0-1-、2cosx0=2sin(x0--1,0-∴f(x0(=2sin(x0--1<2-1=1.-e【解析】設(shè)P(x,lnx(,設(shè)g(x(=x2+2?(lnx(2,此時(shí)直線OP的方程為y=-x,設(shè)直線y=-x與曲線y=alnx相切于點(diǎn)(x0,alnx0(,由y=alnx?y/=?=-1?x0=-a,顯然(x0,alnx0(在直線y=-x上,則alnx0=-x0,因此有aln(-a(=a?a=-e,故答案為:-e.得g/(x(=-2x2+3x-1=-(2x-1((x-1(,而g=--<g(1(=-,所以g(x(max=g(1(=-2∈,2f(x1(≥g(x2(成立,則只需f(x(min≥g(x(max即可,由函數(shù)f(x(=+lnx-,可得f/(x(=-=,f/(x(>0,f(x(在,2|遞增,f(x(min=f=3a-ln3-,故3a-ln3-≥-,解得a≥ln3+(舍去);所以f(x(在(0,a(上單調(diào)遞減,在(a,+∞(上單調(diào)遞增,f(x(<0,f(x(在,2|遞減,f(x(min=f(2(=+ln2-,所以.f(x(在點(diǎn)(1,f(1((處的切線方程為y-9=12(x-1(,即12x-y-3=0.則f(x(=-3x2+6x+9=-3(x+1((x-3(,列表如下:x(-∞,-1(-1(-1,3(3f(x(-0+0-f(x(減增減所以函數(shù)f(x(的極小值為f(-1(=-7,極大值為f(3(=25.f(0(=c=0,f(0(=c=0,所以函數(shù)f(x(的解析式是f(x(=x3-3x2+3;f(1(=1,則有切線l的方程為y-1=-3(x-1(,于是得x2(2ax+b(-(2x-1((ax2+bx+c(=1,化簡(jiǎn)得(a-b(x2+(b-2c(x+c=1,所以函數(shù)f(x(的解析式為f(x(=2x2+2x+1;8x-4a,f(2(=-4-4a,由于曲線y=f(x(在點(diǎn)(2,f(2((處的切線與直線2x-4y+3=0垂直,故-4-4a=-2,解得a=-;(2)函數(shù)f(x(在區(qū)間[0,6[上單調(diào)遞減,則fl(x(=3x2-8x-4a≤0在區(qū)間[0,6[上恒成立,故a≥x2-2x,當(dāng)x∈[0,6[時(shí),x2-AO2=、52-32=4,所以SO1=r4-r,所以V(r(=πr2(4-r(=π(3r2-r3(,0<r<3.所以Vl(r(=π(6r-3r2(,令Vl當(dāng)r∈(0,2(時(shí),Vl(r(>0,所以V(r(在(0,2(上單調(diào)遞增;當(dāng)r∈(2,3(時(shí),Vl(r(<0,所以V(r(在(2,3(上單調(diào)遞減.所以當(dāng)r=2時(shí),V(r(取得最大x-1-2x,fl(x(=2ex-1-2,k=fl(2(=2e-2,切點(diǎn)(2,2e-4(,切線方程為y=(2e-2((x-2(+2e-4,即y=(2e-2(x-2e;(2)設(shè)g(x(=x-lnx-1(x>1(,則gl(x(=1-,x>1所以2ex-1-a(x-lnx-1(-2x>0?a<--,設(shè)h(x(=lnx-x+1+(x>1(,hl(x(=-1+(x-1(=>0,所以h(x(在(1,+∞(上遞增,h(x(>h(1(=0,即lnx-x+1+>0,x-lnx-1<,設(shè)p(x(=ex-1-x-(x>1(,pl(x(=ex-1-1-(x-1(=ex-1-x,再設(shè)q(x(=ex-1-x,則ql(x(=ex-1-1,所以ex-1-x>,所以f(x(=(2e-x(lnx,fl(x(=-1-lnx(x>0(,設(shè)g(x(=-1-lnx(x>0(,則g(x(=所以g(x(單調(diào)遞減,即f(x(在(0,+∞(上單調(diào)遞減,當(dāng)x∈(e,+∞(時(shí),f(x(<0,f(x(單調(diào)遞減.<x2,設(shè)F(x(=f(x(-f(2e-x(=(2e-x(lnx-xln(2e-x(,1<x≤e,則F(x(=--2-ln[x(2e-x([,因?yàn)?<x(2e-x(=-(x-e(2+e2≤e2,所以F(x(≥-2-lne2=0,所以F(x(單調(diào)遞增,所以F(x(≤F(e(=0,f(x(<f(2e-x(,所以f(x1(<f(2e-x1(,又f(x1(=f(x2(,所以f(x2(<f(2e-x1(,,f(x(在(e,+∞(上單調(diào)遞減,設(shè)φ(x(=(x>1(,則(x(=設(shè)h(x(=1--lnx(x>1(,則h(x(=-=<0(x>1(,所以(x1-1(ln(2e+1-x1(<(2e-x1(lnx1,即[2e-(2e+1-x1([ln(2e+1-x1(<(2e-x1(lnx1,所以f(2e+1-x1(<f(x1(,又f(x1(=f(x2(,所以f(2e+1-x1(<f(x2(,,f(x(在(e,+∞(上單調(diào)遞減,2x<33,因?yàn)閤∈N*因?yàn)锽={1,2,3,4},所以A∪B={1,2,3,4,5,6,7},-3x>0?a>3x>0,log(a-3x(=x-2?a-3x=32-x?a=+3x≥2?3x=6,當(dāng)且僅當(dāng)=3x?x=1時(shí)取等【題4】C【解析】∵拋物線y=-x2-2x+m∴m<-2,∴-m>2,-1<n<m,-f(n(>m-n,故f(m(-m>f(n(-n.設(shè)g(x(=f(x(-x,則g(m(-g(n(>0,所以函數(shù)g(x(在區(qū)間(-1,+∞(上單調(diào)遞增,故g,(x(=f,(x(-=2x+-a-≥0在區(qū)間(-1,+∞)上恒成立,即2x+-≥a在區(qū)間(-1,+∞(上恒成立,-=2(x+1(+-2-≥,當(dāng)且僅當(dāng)x=0時(shí),等號(hào)成立,所以f,(x(=+2bx,所以f(x(=2lnx-x2+3,f,(x(=-2x=,所以f(x(在(0,1(上單調(diào)遞增,在(1,+∞(上單調(diào)遞減,符合題意,所以f(3(=2ln3-6.故選:C.1(a<0(可得f(x(=3x2+6ax,故極小值點(diǎn)為x0=-2a,由f(x1(=f(x0(可得x+3ax+1=(-2a(3+3a?(-2a(2+1,整理得(x1-a((x1+2a(2=0,?f(x1+x0(=af(-a(=a(2a3+1(,f(x(<0,即函數(shù)f(x(在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增,所以f(x(min=f(0(=0,0.1-1>0.1,∴h(x(=tanx-x在x∈(0,上單調(diào)遞增,令g(x(=lnx-x+1,則g(x(=-1=,x-1-tanx(x∈(0,0.1](,則t(x(=ex-,∴t(x(在(0,0.1]上單調(diào)遞增,∴t(0(<t(0.1(,∴t(0.1(=e0.1-1-tan0.1>e0-1-tan0=0,0.1-1>tan0.1=c,的圖象可得,當(dāng)x<-4時(shí),f,(x(<0,當(dāng)x>-4時(shí),f,(x(≥0(僅在x=0處有f,(x(=0),故函數(shù)y=f(x(在(-∞,-4(上單調(diào)遞減,在(-4,+∞(上單調(diào)遞增.所以x=-4y=f(x(在區(qū)間(-4,1(上單調(diào)遞增,故選項(xiàng)C正確.由函數(shù)y=f,(x(的圖象可得0=f,(0(<f,(1(,所以y=f(x(在x=1處切線的斜率大于零,故選項(xiàng)D正確.a-2=4【題11】BCD【解析】因?yàn)閒(x+2(是偶函數(shù),所以f(x+2(=f(-x+2(,又因?yàn)閒(x(是奇函數(shù),所以f(-x+2(=-f(x-2(,所以f(x+2(=-f(x-2(,所以f(x+4(=-f(x(,所以f(x+8(=-f(x+4(=f(x(,所以f(x(的周期為8,故A錯(cuò)誤;又當(dāng)x∈[0,2[時(shí),f(x(=x2+2x,所以f(-3(=f(5(=-f(1(=-3,選項(xiàng)B正確;f(2022(=f(6+252×8(=f(6(=-f(2(=-8,選項(xiàng)C正確;f(2023(=f(7+252×8(=f(7(=-f(3(=f(-3(=-3,選項(xiàng)D正確.【題12】ABD【解析】由函數(shù)y=f(x(為偶函數(shù)可得,f(-3(=f(3(,因?yàn)閒(x+6(=f(x(+f(3(,令x=-3可得f(3(=f(-3(+f(3(=2f(3(,所以f(3(=0,B正確;所以f(x+6(=f(x(+f(3(=f(x(,即f(x+6(=f(x(,所以f(x(為周期為6的函數(shù),又f(-2(=-1,所以f(2024(=f(337×6+2(=f(2(=f(-2(=-1,A正確;函數(shù)在[0,3[上為增函數(shù),由周期性得到函數(shù)在[-6,-3[上是增函數(shù),又x=-6為對(duì)稱(chēng)軸,則函數(shù)在[-9,-6[上是減函數(shù),C錯(cuò)誤;因?yàn)閒(3(=0,所以f(-3(=0,f(9(=f(6+3(=0,f(-9(=f(9(=0,結(jié)合函數(shù)的周期為6及函數(shù)的增減性可得方程f(x(=0在[-9,9[上僅有4個(gè)根,D正確.,,≤0,所以f(-1(=a+1,又因?yàn)閍>-1,所以f(-1(=a+1>0,所以f[f(-1([=f(a+1(=2a+1=4=22,得(x-1((x-a(<0,+bx-4≥0,其對(duì)稱(chēng)軸為t=-.該二次函數(shù)在-,+∞(上是增函數(shù).x(=2--==,x∈(0,+∞(,∴曲線y=f(x(在點(diǎn)(1,f(1((處的切線方程為y-5=-2(x-1(,即2x+y-7=0.(2)令f,(x(<0得0<x<;令f,(x(>0得x>,∴f(x(的單調(diào)減區(qū)間是(0,f(x(的單調(diào)增區(qū)間是,+∞(.-x+x-2=+x-2,所以f,(x(=故當(dāng)a≤0時(shí),f(x(單調(diào)遞增;(2)f(x(≥0等價(jià)于a≥(2-x(ex.令函數(shù)g(x(=(2-x(ex,則g,(x(=(1-x(ex,當(dāng)x∈(-∞,1(時(shí),g,(x(>0,g,(x(<0,g(x(單調(diào)遞減.所以f(x(在(e,f(e((處的切線方程為y-e=2(x-e(,即y=2x-e;(2)若2f(x(≥g(x(對(duì)任意的x∈,e恒成立,則2,(x(=0得x=1,,(x(<0,h(x(單調(diào)遞增,,(x(=2ax-lnx-1.因?yàn)楹瘮?shù)f(x(在(0,+∞(上單調(diào)遞增,所以當(dāng)x>0時(shí),令g(x(=(x>0(,則g,(x(=-,,(x(>0,(x(<0,,即ex-ex<lnx+.,則h,(x(=ex-1只需證ex-,即ex-ex<lnx+.,則h,(x(=ex-1所以lnx+≥0.易知φ(x(在(0,1(上單調(diào)遞增,在(1,+故f(x(的單調(diào)遞減區(qū)間為(-2,0(,單調(diào)遞增區(qū)間為(-∞,-2),(0,+∞(;設(shè)函數(shù)g(x(=(-2≤x≤0(,-1,0(,且em=-m3,所以當(dāng)f(x(在[-2,0[上有2個(gè)零點(diǎn)時(shí),≤a<-.f(x(的定義域?yàn)?0,+∞(,f(x(=lnx-2ax,由題意得f(x(=0在(0,+∞(上有兩解,令g(x(=(x>0(,即g(x(的圖象與直線y=2ah(x(=xlnx-2x+(x>0(,h(x(=lnx-1-,令m(x(=lnx-1-,則m(x(=,當(dāng)x>0時(shí),m(x(>0,所以h(x(在(0,+∞(上單調(diào)遞增,1-,lnx0-1-,,h(x(單調(diào)遞減;,+∞(時(shí),h(x(>0,h(x(單調(diào)遞增,∴h(x(min=h(x0(.0,∴l(xiāng)nx0-1-,∴h(x0(=x0lnx0-2x0+=-x0+=-x0+<-e+<0.又∵h(yuǎn)(1(=0,h(x(在(0,x0(上單調(diào)遞減,∴h(x(在(0,x0(上有一個(gè)零點(diǎn).∵h(yuǎn)(x(在(x0,+∞(上單調(diào)遞增,且h(e2(=,∴h(x(在(x0,+∞(上有一個(gè)零點(diǎn).∴cosθ+cosθ-sinθ=cosθ-sinθα-1=-,cos(2α-=cos2αcos+sin2αsin=-×+(--(2α+=-cos(2α+=-.故選:C.故選B.f(π+x(的定義域?yàn)?-π,π(,且f(π+x(=[ln(π+x(+ln(π-x([?sin(π+x(=-[ln(π+x)+ln(π-x([?sinx,記g(x(=f(π+x(,則有g(shù)(-x(=-[ln(π-x(+ln(π+x([Isin(-x(=[ln(π-x(+ln(π+x([?sinx=-g(x(,f(π-x(=[ln(π-x(+ln(π+x([?sin(π-x(=[ln(π-x(+ln(π+x([?sinx=-f(π+x(,故f(x(的圖象關(guān)于點(diǎn)(π,0(對(duì)稱(chēng),選項(xiàng)A錯(cuò)誤;令f(x(=0,則有[lnx+ln(2π-x([?sinx=0,即lnx+ln(2π-x(=0或sinx=0,排除AC;y=sin(2x-的圖象上所有點(diǎn)橫坐標(biāo)擴(kuò)大到原來(lái)的2倍, f(x(單調(diào)遞減,故C正確;故f(x(=3sin(2x+φ(因?yàn)閒(-=3sin2×(-+φ=3,一個(gè)單調(diào)遞增區(qū)間為-,,g(x(在0,|上只有一個(gè)零點(diǎn),選項(xiàng)BD正確.2x<log2yy設(shè)f(x(=log2x,顯然f(x(在區(qū)間(0,+∞BC.2<xy.x<y,∴xy<02<xy不成立.2<xy不成立.y-x>0,則y-x+1>1,ln(y-x+1(>0,故C正確;x-y<20=1∴sinxcosx=,∴f(t(=t+=t2+t-,t∈[-2,2[,∴當(dāng)t=-1時(shí),f(t(min=-1-=-1,即f(x(的最小值為一1.故答案為:-1.由-π≤x2<x1≤π,得x2=-,x1=,則x1-2x2=-2×(-=.故答案為:.k-1∴sin(π-α(=sinα=;所以f(x(的單調(diào)遞減區(qū)間為kπ-,kπ+,k∈Z.(1(f(x(=2sin(x+、3cos(x++cos(x-所以函數(shù)f(x(的對(duì)稱(chēng)中心為-,1(,k∈Z.令g(x(=f(x(-m2+2m=0,得f(x(=m2-2m,則0≤m2-2m≤3,解得-1≤m≤0或2≤m≤3,所以m的取值范圍是[-1,0[∪[2,3[.根據(jù)圖象可得,(-,0(是f(x(故函數(shù)的對(duì)稱(chēng)中心為-,0(,k∈Z.到y(tǒng)=sin2(x--=sin(2x-=-cos2x的圖象,即g(x(=-cos2x,令2kπ-π≤2x≤-≤x≤kπ,k∈Z-60°-45°=75°,、即PM==2PB=(、3-1(4同理可得PN=(、3-1(PC,所以PM+PN=(3-1((PC+PB(=(3-1(BC=400(3-1(為定值;MN2=PM2+PN2-2PM?PNcos60°,即MN2=(PM+PN(2-3PM?PN≥(PM+PN(2-3×,所以MN2≥,MN≥,故MN≥200(、3-1(,當(dāng)且僅當(dāng)PM=PN=200(、3-1故當(dāng)P點(diǎn)是MN的中點(diǎn)時(shí),三條小徑(PM,PN,MN( 、△CPN=4?(3、△CPN=所以S△BPM+S△CPN=?(3-1((PB2+PC2(=[(PB+PC(2-2PB?PC[≥(PB+PC(2-2×=(PB+PC(2=BC2=20000(3-、3(.x-(x+1(,令f(x(=ex-(x+1),x∈R,g(-1(=1-cosx+ex-(x+1(=ex-cosx-x,∵cosx∈[-1,1[,∴ex-cosx-x≥ex-x-1≥0,即g(-1(≥0.(2)g(1(=cosx-1+ex-(x+1(=cosx+ex-x-2,令h(x(=cosx+ex-x-2,求導(dǎo)h,(x(=ex-sinx-1,hⅡ(x(=ex-cosx,h川(x(=ex+sinx-1,1(,可知函數(shù)h川(x(在(-1,1(上單調(diào)遞增,x(單調(diào)遞,(x(單調(diào)遞增,,(x(取得極小值也是最小值,且h,(0(=0,所以h,(x(≥0,即函數(shù)h(x(在(-1,1(上單調(diào)遞增,-isin=22-22i=cos+isin,所以復(fù)數(shù)cos-isin的輻角主值是.故選:D.2-α[=cos(α+β(cosα+sin(α+β(sinα、、∴BO=BG=BG∴BO=BG=BG∵B=B+A=B+52-1A—=B+52-1(B-B(=BA+BO=BA+BO【題6】D【解析】由正弦定理及題意,得(sinA-sinAcosB(sinB=(sinB-sinCcosC(sinA,∴sinAsinBcosB=sinCsinAcosC.∴P=(2cosθ-x,2sinθ-y(=,-.∴(2cosθ-x(2+(2sinθ-y(2=2+(-2=.-2(2xcosθ+2ysinθ(=,則zn=cosnθ+isinnθ,n∈N*;(1+i(2(i(1+i(2(i-1((i+1(故0<sinA<sinB,從而sin2A<sin2B,即1-cos2A<1-cos2B,2A>cos2B.∠ADC,s可以求出AC,再利用∠ACB、AC解直角△ABC得到AB的值.故選ACD.對(duì)于B,當(dāng)x>0時(shí),f(1+x(=2f(1-x(,對(duì)f(1+x(=2f(12f,(1-x((-1(=-2f,(1-x(,1+x(+f,(1-x(=-2f,(1-x(+f,(1-x)=-f,(1-x(<0,所以f,(1-x(>0,令1-x=μ,∴μ<1,f,(μ(>0,所以f(x(在(-∞,1]上單調(diào)遞增,所以B錯(cuò);對(duì)于C,由B知,f(x(在(-∞,1]上單調(diào)遞增,同理可得f(x(在(1,+∞(上單調(diào)遞減,,則f(x1(<f(x2(x2<2;-x2<1,而f(x2(=2f(2-x2(,則f(x2(-f(2-x2(=f(2-x2(<0,所以f(x2(<f(2-x2(?f(x1(<f(2-x2(,而x1,2-x2<1,所以x1<2-x2?x1+x2<2,故C正確;對(duì)于D,由f(x(在(-∞,1]上單調(diào)遞增,(1,+∞(上單調(diào)遞減,知f(x(≤f(1(=0,2∈又x1<2-x2?πx1<π(2-x2(,所以f(x1(>f(x2(?,當(dāng)x≥0時(shí),f(1+x(=2f(1-x(,-x1(?f(x2(2∈2<1+x2<2?x2<2-x1,所以f(x2(-x1(?f(x2(2-b2=3,故t的取值范圍為(-∞,-|U{6},故答案為:(-∞,-|U{6}.DA.BC=DB.AC=DC.AB=0,:DA丄BC,DB丄AC,DC丄AB,:B=,,:B=2+所以(a-b(×sinB+(sinA+sinC((c-a(=0,由正弦定理得(a-b(×b=(a+c((a-c(,2-4CD因?yàn)閟inB<sinC,故B<C,“A=A,:C=C+A=-A—+A.(2)設(shè)A=A+λB=A+μC,將B=-A+A,C=-A+A,代入A+λB=A+μC,故A=A++A(=A+A,則Rt△ADF三Rt△BCE,:AF=BE,當(dāng)點(diǎn)N在BC上時(shí),n∈,MN2=m2+n2-2mncos=m2+n2-4≥2mn-4=4,當(dāng)點(diǎn)N在CD上(不包括端點(diǎn)C)時(shí),四邊形BCN所以tan∠EBG=所以tan∠EBF=tan(∠FBG-∠EBG(2=AB2+AC2-所以DC=BC=,=1AB2+2A.A+A2.2因?yàn)锳=A,所以A=A+A(=A+A,又A.E=,所以A+A(.(μA-λA(=,6μ-λ=(2),λ=,λ=-,f,(x(>0,f(x(單調(diào)遞增,,f(x(單調(diào)遞減,“4>π>e>1,:f(4(<f(π(<f(e(.即a<c<b.,(x(>0,(x(<0 不妨設(shè)x2>x12>>x1>0,h,(e-2(=1+lne-2=-1,則h(x(在點(diǎn)(e-2,-2e-2(處的切線方程為y+2e-2=-(x-e-2(,即y=-x-e-2,設(shè)直線y=-x-e-2與直線y=-m的交點(diǎn)橫坐標(biāo)為x3,則x3=m-e-2,3≤x1,設(shè)H(x(=xlnx-(-x-e-2(=xlnx+x+e-2,則H(x(=lnx+2,0<x<e-2時(shí),H(x(<0,H(x(單調(diào)遞減,e-2<x時(shí),H(x(>0,H(x(單調(diào)遞增,所以H(x(min=H(e-2(=0,所以H(x(≥0,即xlnx≥-x-e-2,即h(x(的圖象在切線y=-x-e-2同理得h(x(在點(diǎn)(1,0(處的切線方程為y=x-1,設(shè)直線y=x-1與直線y=-m的交點(diǎn)橫坐標(biāo)為x4,則x4=-m+1,同理可得,h(x(的圖象在切線y=x-1的上方(只有點(diǎn)(1,0(是公共點(diǎn)),如圖所示,所以x4>x2,2-x1<x4-x3=-m+1+e-2-m,即x2-x1<e-2+1-2m.即|x1-x2|+2m<e-2+1.,n≥2,n=Sn-Sn-1=(3n-2(-(3n-1-2(=2?3n-1.1,n=1,1,n=1,n-1,n≥2,238n{是公差為17的等差數(shù)列,c2-2accosB,可得1=(a+c(2-2ac-2accos=4-(2+、3(ac,因?yàn)閒(x(=asin(ax(,a>0的極大值和極小值分別為a,-a,n=+2(n-1(得,Sn=nan-2n(n-1(,n=Sn-Sn-1=nan-(n-1(an-1-4(n-1(,所以==-,×(1-+-+?+-n=nan-(n-1(an-1+(n-1(an-1-(n-2(an-2+?+2a2-a1+a1=n2,所以an=n.所以bn=[lgan[.所以f(n(=2|sin-1的周期為T(mén)=2.f(n(=-1.n=a4n-3+a4n-2+a4n-1+a4n,則數(shù)n=3+(n-1(×(-5(=8-5n,故C正確;對(duì)于D,設(shè)數(shù)列{bn{中的第k項(xiàng)是數(shù)列{an{中的第m項(xiàng),則mAC.n+1=1.2an-1000n+1n-2,3n-1,共有(3-1(?3n-1-1{為等比數(shù)列,因此選項(xiàng)A正確;Sn=2+?+n-1,Sn=23+?+n,Sn=4-因此選項(xiàng)D不正確,點(diǎn)(an-2,an(,(an,an+2((n≥3(是函數(shù)g(x(圖象上的兩點(diǎn),所以an+2-anan-an-22選項(xiàng)A正確;2n-1>,所以an+Sn=-6+4(n-1(-6n+×4=2n2-4n-10,故答案為:2n2-4n-10.∵CA=2CE,∴BE∴A?B=A+AA-A(=AC-2-×22-×2×2×=-.故答案為:-.335π-3sin3則AP335π-3sin3則AP=2+3,4sin32,設(shè)P(x,y(,則x-(-323(=2+32,|y-23=-S(n-S(n-1(=ω(7n-6(+ω(7n-5(+ω(7n-4(+ω(7n-3(+ω(7n-2(+又7n-6=1×70+(n-1(0+(n-1(?7,7n-1=6×70+(n-1(?7,所以ω(7n-1(=6+n-1=n+5,所以S(n(-S(n-1(=7n+15,n≥2,2所以數(shù)列{an{的通項(xiàng)公式為an=2×2n-1=2n=log22n=nn+1-bn=(n+1(-n=1,即數(shù)列{bn{是等差數(shù)列,1+n2n2+所以數(shù)列1+n2n2+sin∠ACBsin∠ABCsin∠ABCAC由正弦定理得AB=AC?sin∠ACBsin∠ACBsin∠ABCsin∠ABCAC因?yàn)椤螦DB+∠ADC=π,即cos∠ADB+cos∠ADC=0,{an{的公差為d(d≠0(,,,4所以an=2n-1,n∈N*.T=(1-+-+?+-Γ|L=1-=-,qqqn-1=n-5.4Tn4-2anan-1(anan-1+an+1(=0,得(an-an-1(2-anan-1(an-an-1(-2aa-1=0,即(an-an-1+anan-1((an-an-1-2anan-1(=0,由{an{是單調(diào)遞減的正項(xiàng)數(shù)列,得an-an-1-2anan-1<0,則an-an-1+anan-1=0,即n-a-1=1,nn=.11111(n+1(n11111(n+1(n>+?+44=1-=1-+?+--+=1-=1-+?+--+-311n+1所以Sn1n+1=an+2n-1,∴an=an-1+2n-1-1(n≥2(,an-1=an-2+2n-2-1,?1-1,上式累加可得:an-a1=2n-2-(n-1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 22390.5-2026高壓直流輸電系統(tǒng)控制與保護(hù)設(shè)備第5部分:直流線路故障定位裝置
- 人民調(diào)解法題目及答案
- 養(yǎng)老院物資采購(gòu)制度
- 養(yǎng)老院老人生活?yuàn)蕵?lè)活動(dòng)組織服務(wù)質(zhì)量管理制度
- 高中生必考題目及答案
- 辦公室員工薪酬福利制度
- 列席旁聽(tīng)制度
- 金屬非金屬礦山職業(yè)衛(wèi)生十三個(gè)制度
- 酒店布草一客一換制度
- 初一上冊(cè)月考題目及答案
- 保函管理辦法公司
- 幼兒游戲評(píng)價(jià)的可視化研究
- 果樹(shù)賠賞協(xié)議書(shū)
- 基底節(jié)出血的護(hù)理查房
- 2025年廣東省中考物理試題卷(含答案)
- 金華東陽(yáng)市國(guó)有企業(yè)招聘A類(lèi)工作人員筆試真題2024
- 2025年6月29日貴州省政府辦公廳遴選筆試真題及答案解析
- 2025年湖南省中考數(shù)學(xué)真題試卷及答案解析
- DB32/T 3518-2019西蘭花速凍技術(shù)規(guī)程
- 急救中心工作匯報(bào)
- 裝修敲打搬運(yùn)合同協(xié)議書(shū)
評(píng)論
0/150
提交評(píng)論