版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知,則為(
)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能2、已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA3、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(
)A.24 B.30 C.36 D.424、圖中的小正方形邊長都相等,若,則點Q可能是圖中的(
)A.點D B.點C C.點B D.點A5、已知,如圖,在△ABC中,D為BC邊上的一點,延長AD到點E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個數(shù)有(
)A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,點B,F(xiàn),C,E在一條直線上,,,請?zhí)砑右粋€條件,使≌,這個添加的條件可以是______(只需寫一個,不添加輔助線).2、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.3、如圖,中,,,D為延長線上一點,,且,與的延長線交于點P,若,則__________.4、如圖,ADBC,,,連接AC,過點D作于E,過點B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數(shù)量關(guān)系___.5、如圖,,,若,則線段長為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).2、如圖,點E在邊AC上,已知AB=DC,∠A=∠D,BC∥DE,求證:DE=AE+BC.3、已知Rt△ABC中,∠BAC=90°,AB=AC,點E為△ABC內(nèi)一點,連接AE,CE,CE⊥AE,過點B作BD⊥AE,交AE的延長線于D.(1)如圖1,求證BD=AE;(2)如圖2,點H為BC中點,分別連接EH,DH,求∠EDH的度數(shù);(3)如圖3,在(2)的條件下,點M為CH上的一點,連接EM,點F為EM的中點,連接FH,過點D作DG⊥FH,交FH的延長線于點G,若GH:FH=6:5,△FHM的面積為30,∠EHB=∠BHG,求線段EH的長.4、已知:RtABC中,∠B=90°,D是BC上一點,DF⊥BC交AC于點H,且DF=BC,F(xiàn)G⊥AC交BC于點E.求證:AB=DE.5、如圖,已知射線AB與直線CD交于點O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度數(shù);(2)試說明OD平分∠AOG.-參考答案-一、單選題1、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點】此題考查的是直角三角形的判定,掌握有兩個內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.2、B【解析】【分析】利用全等三角形判定定理ASA,SAS,AAS對各個選項逐一分析即可得出答案.【詳解】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.故選B.3、B【解析】【分析】過D作DE⊥AB交BA的延長線于E,根據(jù)角平分線的性質(zhì)得到DE=CD=4,根據(jù)三角形的面積公式即可得到結(jié)論.【詳解】如圖,過D作DE⊥AB交BA的延長線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點】本題考查了角平分線的性質(zhì),三角形的面積的計算,正確的作出輔助線是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)全等三角形的判定即可解決問題.【詳解】解:觀察圖象可知△MNP≌△MFD.故選:A.【考點】本題考查全等三角形的判定,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.5、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯誤;故選C.【考點】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識,靈活運用所學知識是解題的關(guān)鍵.二、填空題1、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據(jù)等式的性質(zhì)可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點】本題主要考查了三角形全等的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.2、1【解析】【分析】先根據(jù)三角形面積公式計算出DE=
1,再根據(jù)角平分線的性質(zhì)得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD
=×
DE
×
AB
=
2,
DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC
=×2×1=
1.故答案為:1.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,屬于基礎題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.3、【解析】【分析】作于,根據(jù)全等三角形性質(zhì)得出CP=PM,DC=AM,設PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.【詳解】解:作于,,,,,,,,在和中,,,,,,,,在和中,,,,,設,,,,,故答案為:.【考點】本題考查了三角形內(nèi)角和定理,全等三角形的性質(zhì)和判定的應用,主要考查學生的推理能力.4、
30
【解析】【分析】(1)根據(jù)直角三角形兩銳角互余進行倒角即可求解;(2)根據(jù)ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點】本題考查直角三角形兩銳角互余、全等三角形的判定與性質(zhì)等內(nèi)容,根據(jù)已知條件進行倒角是解題的關(guān)鍵.5、8【解析】【分析】過點D作DH⊥AC于H,由等腰三角形的性質(zhì)可得AH=HC,∠DAC=∠DCA=30°,由直角三角形的性質(zhì)可證DH=CF,由“AAS”可證△DHE≌△FCE,可得EH=EC,即可求解.【詳解】解:如圖,過點D作DH⊥AC于H,在△DHE和△FCE中,故答案為8.【考點】本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.三、解答題1、35o【解析】【分析】根據(jù)全等三角形對應角相等可得∠C=∠D,∠OBC=∠OAD,再根據(jù)三角形的內(nèi)角和等于180°表示出∠OBC,然后利用四邊形的內(nèi)角和等于360°列方程求解即可.【詳解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65o,∴∠OBC=180o?65o?∠C=115o?∠C,在四邊形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360o,∴65o+115o?∠C+135o+115o?∠C=360o,解得∠C=35o.【考點】此題考查了全等三角形的性質(zhì)和四邊形的內(nèi)角和等于360°,熟練掌握這兩個性質(zhì)是解題的關(guān)鍵.2、見解析【解析】【分析】根據(jù)AAS證明△ABC≌△DCE,得到DE=AC,BC=EC,再進行線段的代換即可求解.【詳解】解:證明:∵BC∥DE,∴∠ACB=∠DEC,在△ABC和△DCE中,∴△ABC≌△DCE(AAS),∴DE=AC,BC=EC,∴DE=AC=AE+EC=AE+BC.【考點】本題考查了全等三角形的判定與性質(zhì),熟知全等三角形的判定定理并根據(jù)題意靈活應用是解題關(guān)鍵.3、(1)見解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根據(jù)全等三角形的判定得出△CAE≌△ABD,進而利用全等三角形的性質(zhì)得出AE=BD即可;(2)根據(jù)全等三角形的判定得出△AEH≌△BDH,進而利用全等三角形的性質(zhì)解答即可;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,根據(jù)全等三角形判定和性質(zhì)解答即可.【詳解】證明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE與△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)連接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH與△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,交HR的延長線于點T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG與△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT與△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,設GH=6k,F(xiàn)H=5k,則HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考點】本題考查全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學會利用數(shù)形結(jié)合的思想思考問題,屬于壓軸題.4、見解析【解析】【分析】根據(jù)DF⊥BC,F(xiàn)G⊥AC,可得,由對頂角相等可得,進而根據(jù)等角的余角相等可得,再利用ASA證明,即可得證.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職電子技術(shù)(電子電路設計)試題及答案
- 2025年大學舞蹈表演(舞蹈表演技能)試題及答案
- 2025年中職汽車運用與維修(汽車美容)試題及答案
- 2025年中職(客戶服務實務)客戶服務綜合測試試題及答案
- 2025年高職(旅游管理)導游服務技能階段測試題及答案
- 2025年大學建筑電氣與智能化(電氣工程理論)試題及答案
- 2025年中職(物聯(lián)網(wǎng)技術(shù)應用)物聯(lián)網(wǎng)通信技術(shù)試題及答案
- 2025年高職新能源汽車運營應用管理(管理技術(shù))試題及答案
- 2026年物業(yè)客服(客戶關(guān)系維護)試題及答案
- 2025年中職農(nóng)資營銷與服務(產(chǎn)品推廣)模擬試題
- 徐州村務管理辦法
- 廣東省惠州市2026屆高三上學期第一次調(diào)研考試 歷史 含答案
- 政協(xié)機車輛管理辦法
- 食品加工助劑管理辦法
- DB50∕T 1604-2024 地質(zhì)災害防治邊坡工程結(jié)構(gòu)可靠性設計規(guī)范
- 渝22TS02 市政排水管道附屬設施標準圖集 DJBT50-159
- 非現(xiàn)場執(zhí)法培訓課件
- 中國電氣裝備資產(chǎn)管理有限公司招聘筆試題庫2025
- 糖尿病足的護理常規(guī)講課件
- 2025年高考英語復習難題速遞之語法填空(2025年4月)
- 2025外籍工作人員勞動合同范本
評論
0/150
提交評論