綜合解析人教版8年級數(shù)學上冊《軸對稱》專項測試試題(含答案解析)_第1頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專項測試試題(含答案解析)_第2頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專項測試試題(含答案解析)_第3頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專項測試試題(含答案解析)_第4頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專項測試試題(含答案解析)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,有一張直角三角形紙片,兩直角邊AC=5cm,BC=10cm,將△ABC折疊,使點B與點A重合,折痕為DE,則△ACD的周長為()A.10cm B.12cm C.15cm D.20cm2、如圖,在中,,為邊上的中線,,則的度數(shù)為(

).A.55° B.65° C.75° D.45°3、以下四個標志,每個標志都有圖案和文字說明,其中的圖案是軸對稱圖形是(

)A. B.C. D.4、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°5、在平面直角坐標系中,點關于軸對稱的點的坐標為(

)A. B. C. D.6、三名同學分別站在一個三角形三個頂點的位置上,他們在玩搶凳子的游戲,要求在他們中間放一個凳子,搶到凳子者獲勝,為使游戲公平,凳子應放的最適當?shù)奈恢迷谌切蔚模?/p>

)A.三條角平分線的交點 B.三邊中線的交點C.三邊上高所在直線的交點 D.三邊的垂直平分線的交點7、已知點與點關于軸對稱,則點的坐標為(

)A. B. C. D.8、如圖,已知AB=AC=BD,那么∠1與∠2之間的關系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180° D.3∠1-∠2=180°9、以下是清華大學、北京大學、上海交通大學、浙江大學的校徽,其中是軸對稱圖形的是()A. B.C. D.10、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在和中,,,,,以點為頂點作,兩邊分別交,于點,,連接,則的周長為______.2、在△ABC中,∠A+∠B=∠C,且AB=2BC,∠B=_________.3、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.4、如圖,在△ABC中,AB<AC,BC邊上的垂直平分線DE交BC于點D,交AC于點E,BD=4,△ABE的周長為14,則△ABC的周長為_____.5、如圖,BH是鈍角三角形ABC的高,AD是角平分線,且2∠C=90°-∠ABH,若CD=4,ΔABC的面積為12,則AD=_____.6、如圖,將一張長方形紙條折疊,若,則的度數(shù)為__________.7、等腰三角形的的兩邊分別為6和3,則它的第三邊為______.8、等腰三角形的頂角與其一個底角的度數(shù)的比值稱為這個等腰三角形的“特征值”﹒若等腰中,,則它的特征值_________________.9、如圖,等邊三角形紙片ABC的邊長為6,E,F(xiàn)是邊BC上的三等分點.分別過點E,F(xiàn)沿著平行于BA,CA方向各剪一刀,則剪下的△DEF的周長是_____.10、如圖,在銳角中,,,平分,、分別是、上的動點,則的最小值是______.三、解答題(5小題,每小題6分,共計30分)1、如圖,在直角坐標系中,的三個頂點坐標分別為,,,請回答下列問題:(1)作出關于軸的對稱圖形,并直接寫出的頂點坐標;(2)的面積為.2、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.3、如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.(1)求證:AE=2CE;(2)連接CD,請判斷△BCD的形狀,并說明理由.4、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O.(1)求證:△ABC≌△DCB;(2)△OBC是何種三角形?證明你的結論.5、如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點D.(1)求∠ADC的度數(shù);(2)求證:DC=2DB.-參考答案-一、單選題1、C【解析】【分析】根據(jù)圖形翻折變換的性質(zhì)得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出結論.【詳解】∵△ADE由△BDE翻折而成,∴AD=BD.∵AC=5cm,BC=10cm,∴△ACD的周長=AC+CD+AD=AC+BC=15cm.故選C.【考點】本題考查了翻折變換,熟知圖形翻折不變性的性質(zhì)是解答此題的關鍵.2、B【解析】【分析】首先根據(jù)三角形的三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)直角三角形的兩銳角互余得到答案即可.【詳解】∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=25°,∴∠BAD=65°,故選:B.【考點】本題考查了等腰三角形的性質(zhì),了解等腰三角形底邊的高、底邊的中線及頂角的平分線互相重合是解答本題的關鍵.3、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】∵A,B,C都不是軸對稱圖形,∴都不符合題意;D是軸對稱圖形,符合題意,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解軸對稱圖形的定義是解題的關鍵.4、A【解析】【分析】先判斷出AD是BC的垂直平分線,進而求出∠ECB=45°,即可得出結論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點】此題主要考查了等邊三角形的性質(zhì),垂直平分線的判定和性質(zhì),等腰三角形的性質(zhì),求出∠ECB是解本題的關鍵.5、D【解析】【分析】利用關于x軸對稱的點坐標特征:橫坐標不變,縱坐標互為相反數(shù)解答即可.【詳解】點關于軸對稱的點的坐標為(3,-2),故選:D.【考點】本題主要考查了關于坐標軸對稱的點的坐標特征,熟練掌握關于坐標軸對稱的點的坐標特征是解答的關鍵.6、D【解析】【分析】根據(jù)題意可知,凳子的位置應該到三個頂點的距離相等,從而可確定答案.【詳解】因為三邊的垂直平分線的交點到三角形三個頂點的距離相等,這樣就能保證凳子到三名同學的距離相等,以保證游戲的公平,故選:D.【考點】本題主要考查垂直平分線的應用,掌握垂直平分線的性質(zhì)是關鍵.7、B【解析】【分析】根據(jù)關于軸對稱的性質(zhì):橫坐標相等,縱坐標互為相反數(shù),即可得解.【詳解】由題意,得與點關于軸對稱點的坐標是,故選:B.【考點】此題主要考查關于軸對稱的點坐標的求解,熟練掌握,即可解題.8、D【解析】【分析】根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠B=180°-2∠1=∠C,根據(jù)三角形的外角性質(zhì)可得∠C=∠1-∠2,進一步即得答案.【詳解】解:∵AB=AC=BD,∴∠BAD=∠1,∠B=∠C,∴∠B=180°-2∠1=∠C,∵∠C=∠1-∠2,∴180°-2∠1=∠1-∠2,∴3∠1-∠2=180°.故選:D.【考點】本題考查了等腰三角形的性質(zhì)、三角形的內(nèi)角和定理和三角形的外角性質(zhì)等知識,屬于基本題型,熟練掌握上述知識是解題的關鍵.9、B【解析】【分析】利用軸對稱圖形定義進行依次分析即可.【詳解】A.不是軸對稱圖形,故此選項不合題意;B.是軸對稱圖形,故此選項符合題意;C.不是軸對稱圖形,故此選項不合題意;D.不是軸對稱圖形,故此選項不合題意;故選:B.【考點】此題主要考查了軸對稱圖形,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.10、C【解析】【分析】根據(jù)等腰直角三角形的性質(zhì)得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質(zhì)得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關系可對③進行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),直角三角形的判定與性質(zhì)等知識,熟練掌握全等三角形的判定與性質(zhì)和等腰直角三角形的性質(zhì)是解題的關鍵.二、填空題1、4【解析】【分析】延長AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進而得出答案.【詳解】延長AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識;構造輔助線證明三角形全等是解題的關鍵.2、60°【解析】【分析】利用三角形內(nèi)角和定理求得∠C=90°,在Rt△ACB中,AB=2BC推出∠A=30°,從而得出∠B的度數(shù).【詳解】根據(jù)三角形的內(nèi)角和定理得,∠A+∠B+∠C=180°,∵∠A+∠B=∠C,∴∠C+∠C=180°,解得∠C=90°,在Rt△ACB中,∵AB=2BC,∴∠A=30°,∴∠B=90°-30°=60°.故答案為:60°.【考點】本題考查了三角形內(nèi)角和定理的應用,含30度角的直角三角形的性質(zhì),靈活運用含30度角的直角三角形的性質(zhì)是解題的關鍵.3、.【解析】【分析】如圖,先利用等腰直角三角形的性質(zhì)求出,,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關鍵.4、22【解析】【詳解】【分析】根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得BE=CE,然后求出△ABE的周長=AB+AC,再求出BC的長,然后根據(jù)三角形的周長定義計算即可得解.【詳解】∵BC邊上的垂直平分線DE交BC于點D,交AC于點E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE的周長為14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC的周長是:AB+AC+BC=14+8=22,故答案是:22.【考點】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角形的周長,熟記性質(zhì)是解題的關鍵.5、3【解析】【分析】根據(jù)三角形的外角性質(zhì)和已知條件易證明∠ABC=∠C,則可判斷△ABC為等腰三角形,然后根據(jù)等腰三角形的性質(zhì)可得AD⊥BC,BD=CD=4,再利用三角形面積公式即可求出AD的長.【詳解】解:∵BH為△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC為等腰三角形,∵AD是角平分線,∴AD⊥BC,BD=CD=4,∵ΔABC的面積為12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案為:3.【考點】本題考查了三角形的外角性質(zhì)、等腰三角形的判定和性質(zhì)以及三角形的面積,熟練掌握上述知識是解題的關鍵.6、130°【解析】【分析】延長DC到點E,如圖,根據(jù)平行線的性質(zhì)可得∠BCE=∠ABC=25°,根據(jù)折疊的性質(zhì)可得∠ACB=∠BCE=25°,進一步即可求出答案.【詳解】解:延長DC到點E,如圖:∵AB∥CD,∴∠BCE=∠ABC=25°,由折疊可得:∠ACB=∠BCE=25°,∵∠BCE+∠ACB+∠ACD=180°,∴∠ACD=180°﹣∠BCE﹣∠ACB=180°﹣25°﹣25°=130°,故答案為:130°.【考點】此題主要考查了平行線的性質(zhì)和折疊的性質(zhì),正確添加輔助線、熟練掌握平行線的性質(zhì)是解決問題的關鍵.7、6【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:由題意得:當腰為3時,則第三邊也為腰,為3,此時3+3=6.故以3,3,6不能構成三角形;當腰為6時,則第三邊也為腰,為6,此時3+6>6,故以3,6,6可構成三角形.故答案為:6.【考點】本題考查了等腰三角形的定義和三角形的三邊關系,已知條件沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.8、或【解析】【分析】分∠A為頂角及∠A為底角兩種情況考慮,當∠A為頂角時,利用三角形內(nèi)角和定理可求出底角的度數(shù),結合“特征值”的定義即可求出特征值k的值;當∠A為底角時,利用三角形內(nèi)角和定理可求出頂角的度數(shù),結合“特征值”的定義即可求出特征值k的值.【詳解】當為頂角時,則底角度數(shù)為,則;當為底角時,則頂角度數(shù)為,;故答案為:或.【考點】本題考查了等腰三角形的性質(zhì)及三角形內(nèi)角和定理,分∠A為頂角及∠A為底角兩種情況求出“特征值”k是解題的關鍵.9、CE=故答案為6.【考點】本題主要考查全等三角形的性質(zhì)與判定及等腰三角形的性質(zhì)與判定,熟練掌握全等三角形的判定方法及等腰三角形的性質(zhì)與判定是解題的關鍵.6.6【解析】【分析】先說明△DEF是等邊三角形,再根據(jù)E,F(xiàn)是邊BC上的三等分求出BC的長,最后求周長即可.【詳解】解:∵等邊三角形紙片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等邊三角形∴DE=EF=DF∵E,F(xiàn)是邊BC上的三等分點,BC=6∴EF=2∴DE=EF=DF=2∴△DEF=DE+EF+DF=6故答案為6.【考點】本題考查了等邊三角形的判定和性質(zhì)、三等分點的意義,靈活應用等邊三角形的性質(zhì)是正確解答本題的關鍵.10、4【解析】【分析】過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,再根據(jù)BC=8,∠ABC=30°,由直角三角形的性質(zhì)即可求出CE的長.【詳解】解:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,∵BD平分∠ABC,∴M′E=M′N′,∴M′N′+CM′=EM′+CM′=CE,則CE即為CM+MN的最小值,在Rt中,BC=8,∠ABC=30°,∴CM+MN的最小值是4.故答案為:4.【考點】本題考查的是軸對稱-最短路線問題,根據(jù)題意作出輔助線,構造出直角三角形,含有30°的直角三角形的性質(zhì)求解是解答此題的關鍵.三、解答題1、(1)圖見解析,,,;(2).【解析】【分析】(1)利用軸對稱的性質(zhì)即可畫出,再根據(jù)坐標系中所畫出的三角形即可寫出其頂點坐標.(2)如圖利用割補法即可求出的面積.【詳解】(1)如圖,即為所求,由圖可知,,..(2)如圖取E(1,-2),F(xiàn)(1,-5),G(4,-5),分別連接E、、G、F,由圖可知四邊形EGF為正方形.所以,即.故答案為:.【考點】本題考查利用軸對稱作圖,利用軸對稱的性質(zhì)找出對稱點的位置是解決問題的關鍵.2、AB=2-2,CD=4-.【解析】【分析】此題為幾何題,看題目只是一個四邊形,要求兩條未知邊,那肯定要添輔助線.過點D作DH⊥BA延長線于H,作DM⊥BC于M.構建矩形HBMD.利用矩形的性質(zhì)和解直角三角形來求AB、CD的長度.【詳解】如圖,過點D作DH⊥BA延長線于H,作DM⊥BC于點M.∵∠B=90°,∴四邊形HBMD是矩形.∴HD=BM,BH=MD,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD中,AD=1,∠ADH=30°,則AH=AD=,DH=.∴MC=BC-BM=BC-DH=2-=.∴在Rt△CMD中,CD=2MC=4-,DM=CD=.∴AB=BH-AH=DM-AH=-=【考點】本題考查了勾股定理和矩形的判定與性質(zhì).此題的關鍵是根據(jù)題意作出輔助線,構建矩形.3、見解析【解析】【分析】(1)連接BE,根據(jù)線段垂直平分線的性質(zhì)可得AE=BE,利用等邊對等角的性質(zhì)可得∠ABE=∠A;結合三角形外角的性質(zhì)可得∠BEC的度數(shù),再在Rt△BCE中結合含30°角的直角三角形的性質(zhì),即可證明第(1)問的結論;(2)根據(jù)直角三角形斜邊中線的性質(zhì)可得BD=CD,再利用直角三角形銳角互余的性質(zhì)可得到∠ABC=60°,至此不難判斷△BCD的形狀【詳解】(1)證明:連結BE,如圖.∵DE是AB的垂直平分線,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等邊三角形.理由如下:∵DE垂直平分AB,∴D為AB的中點.∵∠ACB=90°,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論