版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,由個小正方形組成的田字格,的頂點都是小正方形的頂點,在田字格上能畫出與成軸對稱,且頂點都在小正方形頂點上的三角形的個數(shù)共有()A.2個 B.3個 C.4個 D.5個2、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是(
)A. B.1 C.2 D.3、下列圖形中,是中心對稱圖形的是()A. B.C. D.4、如圖,在中,,將繞點C逆時針旋轉(zhuǎn)得到,點A,B的對應(yīng)點分別為D,E,連接.當(dāng)點A,D,E在同一條直線上時,下列結(jié)論一定正確的是(
)A. B. C. D.5、下列運動形式屬于旋轉(zhuǎn)的是(
)A.在空中上升的氫氣球 B.飛馳的火車C.時鐘上鐘擺的擺動 D.運動員擲出的標(biāo)槍6、下列圖形中既是中心對稱圖形,又是軸對稱圖形的是(
)A. B.C. D.7、如圖,邊長為3的正五邊形ABCDE,頂點A、B在半徑為3的圓上,其他各點在圓內(nèi),將正五邊形ABCDE繞點A逆時針旋轉(zhuǎn),當(dāng)點E第一次落在圓上時,則點C轉(zhuǎn)過的度數(shù)為()A.12° B.16° C.20° D.24°8、如圖,在中,,,D為內(nèi)一點,分別連接PA、PB、PC,當(dāng)時,,則BC的值為(
)A.1 B. C. D.29、如圖,將繞點A按順時針旋轉(zhuǎn)一定角度得到,點B的對應(yīng)點D恰好落在BC邊上,若,,則CD的長為(
).A. B. C. D.110、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖:為五個等圓的圓心,且在一條直線上,請在圖中畫一條直線,將這五個圓分成面積相等的兩個部分,并說明這條直線經(jīng)過的兩點是___________.2、在平面直角坐標(biāo)系中,點(﹣3,2)關(guān)于原點對稱的點的坐標(biāo)是____________.3、若點和關(guān)于原點對稱,則的值是___________.4、如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中,每個小正方形的邊長均為1,點A,B,C的坐標(biāo)分別為,,.是關(guān)于軸的對稱圖形,將繞點逆時針旋轉(zhuǎn)180°,點的對應(yīng)點為M,則點M的坐標(biāo)為________.5、如圖,菱形ABCD的邊長為2,∠A=60°,E是邊AB的中點,F(xiàn)是邊AD上的一個動點,將線段EF繞著點E順時針旋轉(zhuǎn)60°得到EG,連接DG、CG,則DG+CG的最小值為_____.6、如圖,在坐標(biāo)系中放置一菱形,已知,點B在y軸上,,先將菱形沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)12次,點B的落點依次為,,,,則的橫坐標(biāo)為______.7、點與點關(guān)于原點對稱,則點的坐標(biāo)是_________.8、兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=13,CD=7.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉(zhuǎn)a(0α90°),如圖2所示.當(dāng)BD與CD在同一直線上(如圖3)時,則△ABC的面積為____.9、已知點A(﹣2,b)與點B(a,3)關(guān)于原點對稱,則a﹣b=______.10、點P(2,﹣3)關(guān)于原點對稱的點的坐標(biāo)是_________.三、解答題(6小題,每小題5分,共計30分)1、如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標(biāo):;(2)平移△ABC,使平移后點A的對應(yīng)點A1的坐標(biāo)為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.2、為等邊三角形,AB=8,AD⊥BC于點D,E為線段AD上一點,.以AE為邊在直線AD右側(cè)構(gòu)造等邊三角形AEF,連接CE,N為CE的中點.(1)如圖1,EF與AC交于點G,連接NG,BE,直接寫出NG與BE的數(shù)量關(guān)系;(2)如圖2,將繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為,M為線段EF的中點,連接DN,MN.當(dāng)時,猜想∠DNM的大小是否為定值,如果是定值,請寫出∠DNM的度數(shù)并證明,如果不是,請說明理由;(3)連接BN,在繞點A逆時針旋轉(zhuǎn)過程中,請直接寫出線段BN的最大值.3、如圖,在平面直角坐標(biāo)系中,線段AB的兩個端點的坐標(biāo)分別是A(﹣1,4),B(﹣3,1).(1)畫出線段AB向右平移4個單位后的線段A1B1;(2)畫出線段AB繞原點O旋轉(zhuǎn)180°后的線段A2B2.4、在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關(guān)于直線BC的對稱點為A′,連接A′B,點P為直線BC上的動點(不與點B重合),連接AP,將線段AP繞點P逆時針旋轉(zhuǎn)60°,得到線段PD,連接A′D,BD.【問題發(fā)現(xiàn)】(1)如圖1,當(dāng)點D在直線BC上時,線段BP與A′D的數(shù)量關(guān)系為,∠DA′B=;【拓展探究】(2)如圖2,當(dāng)點P在BC的延長線上時,(1)中結(jié)論是否成立?若成立,請加以證明;若不成立,請說明理由;【問題解決】(3)當(dāng)∠BDA′=30°時,求線段AP的長度.5、如圖,點是的邊上的動點,,連接,并將線段繞點逆時針旋轉(zhuǎn)得到線段.(1)如圖1,作,垂足在線段上,當(dāng)時,判斷點是否在直線上,并說明理由;(2)如圖2,若,,求以、為鄰邊的正方形的面積.6、如圖,在等邊中,D為BC邊上一點,連接AD,將沿AD翻折得到,連接BE并延長交AD的延長線于點F,連接CF.(1)若,求的度數(shù);(2)若,求的大??;(3)猜想CF,BF,AF之間的數(shù)量關(guān)系,并證明.-參考答案-一、單選題1、C【解析】【分析】因為頂點都在小正方形上,故可分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸進行尋找.【詳解】分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸,作軸對稱圖形:則△ABM、△ANB、△EHF、△EFC都是符合題意的三角形.故選:C.【考點】考查了利用軸對稱涉及圖案的知識,關(guān)鍵是根據(jù)要求頂點在格點上尋找對稱軸,有一定難度,不要漏解.2、A【解析】【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.3、C【解析】【分析】根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項不合題意;B、不是中心對稱圖形,故本選項不合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不合題意.故選:C.【考點】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、D【解析】【分析】由旋轉(zhuǎn)可知,即可求出,由于,則可判斷,即A選項錯誤;由旋轉(zhuǎn)可知,由于,即推出,即B選項錯誤;由三角形三邊關(guān)系可知,即可推出,即C選項錯誤;由旋轉(zhuǎn)可知,再由,即可證明為等邊三角形,即推出.即可求出,即證明,即D選項正確;【詳解】由旋轉(zhuǎn)可知,∵點A,D,E在同一條直線上,∴,∵,∴,故A選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵為鈍角,∴,∴,故B選項錯誤,不符合題意;∵,∴,故C選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵,∴為等邊三角形,∴.∴,∴,故D選項正確,符合題意;故選D.【考點】本題考查旋轉(zhuǎn)的性質(zhì),三角形三邊關(guān)系,等邊三角形的判定和性質(zhì)以及平行線的判定.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.5、C【解析】【分析】根據(jù)旋轉(zhuǎn)的定義逐一進行判斷即可得到正確的結(jié)論.【詳解】解:在空氣中上升的氫氣球,飛馳的火車,運動員擲出標(biāo)槍屬于平移現(xiàn)象,時鐘上鐘擺的擺動屬于旋轉(zhuǎn)現(xiàn)象.故選:C.【考點】本題主要考查關(guān)于旋轉(zhuǎn)的知識,題目比較簡單,屬于基礎(chǔ)題目,大部分學(xué)生能夠正確完成,熟練掌握旋轉(zhuǎn)的定義是解決本題的關(guān)鍵.6、C【解析】【詳解】解:選項A,B中的圖形是軸對稱圖形,不是中心對稱圖形,故A,B不符合題意;選項C中的圖形既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D中的圖形不是軸對稱圖形,是中心對稱圖形,故D不符合題意,故選C【考點】本題考查的是軸對稱圖形與中心對稱圖形的識別,把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,把一個圖形繞某點旋轉(zhuǎn)后能夠與自身重合,則這個圖形是中心對稱圖形,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵.7、A【解析】【分析】根據(jù)點E旋轉(zhuǎn)的角度和點C旋轉(zhuǎn)的角度相等,所以求出點E旋轉(zhuǎn)的角度即可.【詳解】解:如圖設(shè)圓心為O,連接OA,OB,點E落在圓上的點E'處.AB=OA=OB,∠OAB=,同理∠OAE'=,∠EAB=,∠EAO=∠EAB-∠OAB=,∠EAE'=∠OAE'-∠EAO=-=點E旋轉(zhuǎn)的角度和點C旋轉(zhuǎn)的角度相等,點C旋轉(zhuǎn)的角度為,故選A.【考點】本題主要考查旋轉(zhuǎn)的性質(zhì),注意與圓的性質(zhì)的綜合.8、C【解析】【分析】將△BPA順時針旋轉(zhuǎn)60°,到△BMN處,得到△BPM,△ABN是等邊三角形,證明C、P、M、N四點共線,且∠CAN=90°,設(shè)BC=x,則AB=BN=2x,AC=,利用勾股定理計算即可.【詳解】將△BPA順時針旋轉(zhuǎn)60°,到△BMN處,則△BPM,△ABN是等邊三角形,∠BPM=∠BMP=60°,∠BAN=60°,PM=PB,BA=BN,PA=MN,∵∠CPB=∠BPA=∠APC=∠BMN=120°,∴∠BMP+∠BMN=180°,∠BPC+∠BPM=180°,∴C、P、M、N四點共線,∴CP+PM+MN=CP+PB+PA=,∵∠BAC=30°,∠BAN=60°,∴∠CAN=90°,設(shè)BC=x,則AB=BN=2x,AC=,∴,解得x=,x=-,舍去,故選C.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,直角三角形的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.9、D【解析】【分析】根據(jù)直角三角形兩銳角互余可得∠C=30°,根據(jù)含30°角的直角三角形的性質(zhì)可求出BC的長,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AD,然后判斷出△ABD是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得BD=AB,然后根據(jù)CD=BC-BD計算即可得解.【詳解】解:∵∠B=60°,∴∠C=90°-60°=30°,∵AB=1,∴BC=2AB=2,由旋轉(zhuǎn)的性質(zhì)得,AB=AD,∴△ABD是等邊三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),含30°角的直角三角形的性質(zhì),等邊三角形的判定與性質(zhì),熟記性質(zhì)并判斷出△ABD是等邊三角形是解題的關(guān)鍵.10、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點】本題考查了利用軸對稱設(shè)計圖案,解題的關(guān)鍵是掌握常見圖形的性質(zhì)和軸對稱圖形的性質(zhì).二、填空題1、D與【解析】【分析】平分5個圓,那么每份應(yīng)是2.5,由過平行四邊形中心的任意直線都能平分平行四邊形的面積,應(yīng)先作出平行四邊形的中心,再把第5個圓平分即可.【詳解】點D恰好是平行四邊形的中心,則這里過D和O3即可.故答案為:D和O3.【考點】本題考查了作圖-應(yīng)用與設(shè)計作圖以及平行四邊形的判定和性質(zhì),正確的作出圖形是解題的關(guān)鍵.2、(3,﹣2)【解析】【分析】根據(jù)平面直角坐標(biāo)系內(nèi)兩點關(guān)于原點對稱橫縱坐標(biāo)互為相反數(shù),即可得出答案.【詳解】解:根據(jù)平面直角坐標(biāo)系內(nèi)兩點關(guān)于原點對稱橫縱坐標(biāo)互為相反數(shù),∴點(﹣3,2)關(guān)于原點對稱的點的坐標(biāo)是(3,﹣2),故答案為(3,﹣2).【考點】本題主要考查了平面直角坐標(biāo)系內(nèi)兩點關(guān)于原點對稱橫縱坐標(biāo)互為相反數(shù),難度較?。?、-3.【解析】【分析】先求出的值,然后相加即可.【詳解】解:點和關(guān)于原點對稱,則a=-1,b=-2,,故答案為:-3.【考點】本題考查了關(guān)于原點對稱點的坐標(biāo)變化規(guī)律,解題關(guān)鍵是熟知變化規(guī)律,準確進行計算.4、【解析】【分析】根據(jù)題意,畫出旋轉(zhuǎn)后圖形,即可求解【詳解】解:如圖,將繞點逆時針旋轉(zhuǎn)180°,所以點的對應(yīng)點為M的坐標(biāo)為.故答案為:【考點】本題考查平面直角坐標(biāo)系內(nèi)圖形的對稱,旋轉(zhuǎn),解題關(guān)鍵是理解對稱旋轉(zhuǎn)的含義,并結(jié)合網(wǎng)格解題.5、【解析】【分析】取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.根據(jù)菱形的性質(zhì),可得△ADB是等邊三角形,從而得到△AEN是等邊三角形,可證得△AEF≌△NEG,進而得到點G的運動軌跡是射線NG,繼而得到GD+GC=GE+GC≥EC,在Rt△BEH和Rt△ECH中,由勾股定理,即可求解.【詳解】如圖,取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.∵四邊形ABCD是菱形∴AD=AB,∵∠A=60°,∴△ADB是等邊三角形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等邊三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GND=180°﹣60°﹣60°=60°,∴點G的運動軌跡是射線NG,∴D,E關(guān)于射線NG對稱,∴GD=GE,∴GD+GC=GE+GC≥EC,在Rt△BEH中,∠H=90°,BE=1,∠EBH=60°,∴BH=BE=,EH=,在Rt△ECH中,EC==,∴GD+GC≥,∴GD+GC的最小值為.故答案為:.【考點】本題主要考查了菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識是解題的關(guān)鍵.6、【解析】【分析】連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4,由于,因此點B向右平移8即可到達點,根據(jù)點B的坐標(biāo)就可求出點的坐標(biāo).【詳解】連接AC,如圖所示,∵四邊形OABC是菱形,∴,∵,∴是等邊三角形,∴,∴,∵,∴,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示,由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4,∵,∴點B向右平移2×4=8個單位到點,∵B點的坐標(biāo)為,∴的坐標(biāo)為,故答案為:.【考點】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識,考查了操作、探究、發(fā)現(xiàn)規(guī)律的能力.發(fā)現(xiàn)“每翻轉(zhuǎn)6次,圖形向右平移4”是解決本題的關(guān)鍵.7、(﹣2,﹣1).【解析】【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反可得答案.【詳解】∵點A(2,1)與點B關(guān)于原點對稱,∴點B的坐標(biāo)是(﹣2,﹣1),故答案為(﹣2,﹣1).【考點】本題考查了關(guān)于原點對稱的點的坐標(biāo).8、30【解析】【分析】設(shè)AO與BC的交點為點G,根據(jù)等腰直角三角形的性質(zhì)證△AOC≌△BOD,進而得出△ABC是直角三角形,設(shè)AC=x,BC=x+7,由勾股定理求出x,再計算△ABC的面積即可.【詳解】解:設(shè)AO與BC的交點為點G,∵∠AOB=∠COD=90°,∴∠AOC=∠DOB,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠DBO+∠OGB=90°,∵∠OGB=∠AGC,∴∠CAO+∠AGC=90°,∴∠ACG=90°,∴CG⊥AC,設(shè)AC=x,則BD=AC=x,BC=x+7,∵BD、CD在同一直線上,BD⊥AC,∴△ABC是直角三角形,∴AC2+BC2=AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S=,故答案為:30.【考點】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形,利用全等三角形的性質(zhì)解決問題.9、5【解析】【分析】根據(jù)平面直角坐標(biāo)系中,關(guān)于原點對稱的點橫、縱坐標(biāo)都互為相反數(shù),求出a,b的值即可.【詳解】∵點A(﹣2,b)與點B(a,3)關(guān)于原點對稱,∴,,∴故答案為:5.【考點】本題考查平面直角坐標(biāo)系中,關(guān)于原點對稱的點的坐標(biāo)的特點,掌握特殊位置關(guān)系的點的坐標(biāo)變化是解答本題的關(guān)鍵.10、(-2,3)【解析】【分析】根據(jù)平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù).【詳解】解:已知點P(2,-3),則點P關(guān)于原點對稱的點的坐標(biāo)是(-2,3),故答案為:(-2,3).【考點】本題主要考查了關(guān)于原點的對稱點的性質(zhì),正確把握橫縱坐標(biāo)的關(guān)系是解題關(guān)鍵.三、解答題1、(1)(4,﹣1);(2)見解析;(3)見解析.【解析】【分析】(1)根據(jù)關(guān)于原點對稱的兩點的橫縱坐標(biāo)均與原來點的橫縱坐標(biāo)互為相反數(shù),據(jù)此可得答案;(2)將三個點分別向右平移3個單位、再向上平移1個單位,繼而首尾順次連接即可;(3)將三個點分別繞原點O逆時針旋轉(zhuǎn)90°后得到對應(yīng)點,再首尾順次連接即可.【詳解】(1)點B關(guān)于原點對稱的點B′的坐標(biāo)為(4,﹣1),故答案為:(4,﹣1);(2)如圖所示,△A1B1C1即為所求.(3)如圖所示,△A2B2C2即為所求.【考點】本題主要考查作圖—平移變換、旋轉(zhuǎn)變換,解題的關(guān)鍵是掌握平移變換和旋轉(zhuǎn)變換的定義與性質(zhì),并據(jù)此得出變換后的對應(yīng)點.2、(1)(2)∠DNM的大小是定值,為120°(3)【解析】【分析】(1)連接CF.由等邊三角形的性質(zhì)易證△BAE≌△CAF(SAS),即得出.再根據(jù)三角形中位線定理即可求出;(2)連接BE,CF.利用全等三角形的性質(zhì)證明∠EBC+∠BCF=120°,再利用三角形的中位線定理,三角形的外角的性質(zhì)證明∠DNM=∠EBC+∠BCF即可;(3)取AC的中點J,連接BJ,結(jié)合三角形的中位線定理可求出BJ,JN.最后根據(jù)三角形三邊關(guān)系即可得出結(jié)論.(1)解:如圖,連接CF.∵△ABC是等邊三角形,AD⊥BC,∴AB=BC=AC,∠BAD=∠CAD=30°.∵△AEF是等邊三角形,∴∠EAF=60°,G為EF中點,∴∠EAG=∠GAF=30°.即在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴,∵N為CE的中點,G為EF中點,∴,∴;(2)∠DNM=120°是定值,證明如下,如圖,連接BE,CF.同(1)可證△BAE≌△CAF(SAS),∴∠ABE=∠ACF.∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC-∠ABE+∠ACB+∠ACF=120°.∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECF,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠NCD,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.綜上可知∠DNM的大小是定值,為120°;(3)如圖,取AC的中點J,連接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=.∵BJ=AD=,∴BN≤BJ+JN,即BN≤,故線段BN的最大值為.【考點】本題屬于幾何變換綜合題,考查了等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形的中位線定理,三角形三邊關(guān)系的應(yīng)用.解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.3、(1)畫圖見解析,(2)畫圖見解析【解析】【分析】(1)分別確定向右平移4個單位后的對應(yīng)點,再連接即可;(2)分別確定繞原點O旋轉(zhuǎn)180°后的對應(yīng)點,再連接即可.【詳解】解:(1)如圖,線段即為所求作的線段,(2)如圖,線段即為所求作的線段,【考點】本題考查的是平移的作圖,中心對稱的作圖,掌握平移的性質(zhì)與中心對稱的性質(zhì)是解題的關(guān)鍵.4、(1)相等;90°;(2)成立,證明見解析;(3)線段AP的長度為4或4.【解析】【分析】(1)首先推知AP=PB,PC=AP,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(2)如圖②,連接AD,根據(jù)等邊三角形的性質(zhì)得到AB=AA′,由旋轉(zhuǎn)的性質(zhì)得到AP=DP,∠APD=60°,推出△AA′B是等邊三角形,得到PA=PD=AD,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)如圖③,由(2)知,∠BA′D=90°根據(jù)已知條件得到D在BA的延長線上,由旋轉(zhuǎn)的性質(zhì)得到AP=DP,∠APD=60°,推出△AA′B是等邊三角形,得到PA=PD=AD,于是得到結(jié)論;如圖④,由(2)知,∠BA′D=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AP=DP,∠APD=60°,求得PA=PD=AD,∠PAD=∠BAA′=60°,根據(jù)全等三角形的性質(zhì)得到PB=DA′=4,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1)在Rt△ABC中,∠ACB=90°,AC=2,∠ABC=30°,點A關(guān)于直線BC的對稱點為A′,則∠ABC=∠A′BC=30°,AB=A′B.∴∠ABA′=60°.∴△ABA′是等邊三角形,∴∠AA′B=60°,∵∠APD=60°,∴∠BAP=∠ABP=∠PAC=30°,∴AP=PB,PCAP,∵AP=PD,∴PCPD,∴PC=CD,∵AC=A′C,∠ACP=∠A′CD,∴△APC≌△A′DC(SAS),∴DA′=AP,∠CA′D=∠PAC=30°,∴PB=DA′,∠BA′D=60°+30°=90°,故答案為:相等;90°;(2)成立,證明如下:如圖②,連接AD,∵△AA′B是等邊三角形,∴AB=AA′,由旋轉(zhuǎn)的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∴∠BAP=∠BAC+∠CAP,∠A′AD=∠PAD+∠CAP,∠BAC=∠PAD,∴∠BAP=∠A′AD,在△BAP與△A′AD中,∵,∴△BAP≌△A′AD(SAS),
∴BP=A′D,∠AA′D=∠ABC=30°.∵∠BA′A=60°,∴∠DA′B=∠BA′A+∠AA′D=90°;(3)如圖③,當(dāng)點P在BC的延長線上時,由(2)知,∠BA′D=90°∵∠BDA′=30°,∴∠DBA′=60°,∴D在BA的延長線上,由旋轉(zhuǎn)的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∵BA′=4,∴BD=8,∴AP=AD=4;如圖④,當(dāng)點P在CB的延長線上時,由(2)知,∠BA′D=90°,∵∠BDA′=30°,∵BA′=4,∴DA′=4,由旋轉(zhuǎn)的性質(zhì)可得:AP=DP,∠APD=60°,∴△APD是等邊三角形,∴PA=PD=AD,∠PAD=∠BAA′=60°,∴∠PAB=∠DAA′,∵AB=AA′,∴△ABP≌△AA′D(SAS),∴PB=DA′=4,∵AC=2,BC=2,∴CP=6,∴AP4.綜上所述,線段AP的長度為4或4.【考點】本題屬于幾何變換綜合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省邯鄲市臨漳縣2026屆九年級上學(xué)期1月期末考試道德與法治試卷(無答案)
- 中學(xué)食堂衛(wèi)生管理制度
- 養(yǎng)老院興趣小組制度
- 養(yǎng)老院服務(wù)質(zhì)量評估制度
- 企業(yè)人力資源規(guī)劃與發(fā)展制度
- 老年終末期尿失禁皮膚護理的循證多模式干預(yù)方案
- 家用電器安全用電知識普及手冊
- 工業(yè)危險廢物處理工操作水平測試考核試卷含答案
- 我國上市公司現(xiàn)金持有量影響因素剖析:理論、實證與策略
- 我國上市公司并購事件信息傳播與市場反應(yīng)的聯(lián)動效應(yīng)研究:基于多案例與實證分析
- 裝修公司施工進度管控流程詳解
- 村委會 工作總結(jié)
- 2025國家電網(wǎng)考試歷年真題庫附參考答案
- (正式版)DB33∕T 2059-2025 《城市公共交通服務(wù)評價指標(biāo)》
- 2024-2025學(xué)年江蘇省南京市玄武區(qū)八年級上學(xué)期期末語文試題及答案
- 連鎖餐飲門店運營管理標(biāo)準流程
- GB/T 755-2025旋轉(zhuǎn)電機定額與性能
- 鋼結(jié)構(gòu)防護棚工程施工方案
- 2025低空經(jīng)濟發(fā)展及關(guān)鍵技術(shù)概況報告
- 中國藥物性肝損傷診治指南(2024年版)解讀
- 湖南省邵陽市新邵縣2022-2023學(xué)年高一上學(xué)期期末質(zhì)量檢測物理試題
評論
0/150
提交評論