版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、在⊙O中按如下步驟作圖:(1)作⊙O的直徑AD;(2)以點(diǎn)D為圓心,DO長(zhǎng)為半徑畫(huà)弧,交⊙O于B,C兩點(diǎn);(3)連接DB,DC,AB,AC,BC.根據(jù)以上作圖過(guò)程及所作圖形,下列四個(gè)結(jié)論中錯(cuò)誤的是()A.∠ABD=90° B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD2、如圖,是的直徑,弦于點(diǎn),,,則的長(zhǎng)為(
)A.4 B.5 C.8 D.163、已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過(guò)E作弦GF⊥BC交圓與G、F兩點(diǎn),連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是()A.①②④ B.③④ C.①②③ D.①②③④4、如圖,點(diǎn)A,B的坐標(biāo)分別為,點(diǎn)C為坐標(biāo)平面內(nèi)一點(diǎn),,點(diǎn)M為線段的中點(diǎn),連接,則的最大值為()A. B. C. D.5、下列4個(gè)說(shuō)法中:①直徑是弦;②弦是直徑;③任何一條直徑所在的直線都是圓的對(duì)稱軸;④弧是半圓;正確的有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6、如圖,是的內(nèi)接三角形,,是直徑,,則的長(zhǎng)為()A.4 B. C. D.7、如圖,AB是半圓的直徑,點(diǎn)D是弧AC的中點(diǎn),∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°8、如圖,是⊙的直徑,點(diǎn)C為圓上一點(diǎn),的平分線交于點(diǎn)D,,則⊙的直徑為(
)A. B. C.1 D.29、如圖,PA,PB是⊙O的切線,A,B是切點(diǎn),點(diǎn)C為⊙O上一點(diǎn),若∠ACB=70°,則∠P的度數(shù)為(
)A.70° B.50° C.20° D.40°10、如圖,在中,,cm,cm.是邊上的一個(gè)動(dòng)點(diǎn),連接,過(guò)點(diǎn)作于,連接,在點(diǎn)變化的過(guò)程中,線段的最小值是(
)A.1 B. C.2 D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,A、B、C、D為一個(gè)正多邊形的相鄰四個(gè)頂點(diǎn),O為正多邊形的中心,若∠ADB=12°,則這個(gè)正多邊形的邊數(shù)為_(kāi)___________2、如圖,在⊙O中,是⊙O的直徑,,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),是上的一動(dòng)點(diǎn),下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個(gè)數(shù)是_________.3、如圖,四邊形是的外切四邊形,且,,則四邊形的周長(zhǎng)為_(kāi)_________.4、如圖,直線、相交于點(diǎn),半徑為1cm的⊙的圓心在直線上,且與點(diǎn)的距離為8cm,如果⊙以2cm/s的速度,由向的方向運(yùn)動(dòng),那么_________秒后⊙與直線相切.5、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點(diǎn)D為邊AC的中點(diǎn).以點(diǎn)B為圓心,BD為半徑畫(huà)圓弧,交邊BC于點(diǎn)E,則圖中陰影部分圖形的面積為_(kāi)_____.a(chǎn)6、如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(20,0),點(diǎn)B的坐標(biāo)是(16,0),點(diǎn)C、D在以O(shè)A為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為_(kāi)____.7、如圖所示的網(wǎng)格由邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成,點(diǎn)、、、在直角坐標(biāo)系中的坐標(biāo)分別為,,,則內(nèi)心的坐標(biāo)為_(kāi)_____.8、劉徽是我國(guó)魏晉時(shí)期卓越的數(shù)學(xué)家,他在《九章算術(shù)》中提出了“割圓術(shù)”,利用圓的內(nèi)接正多邊形逐步逼近圓來(lái)近似計(jì)算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來(lái)近似估計(jì)的面積,設(shè)的半徑為1,則__________.9、如圖,圓錐的母線長(zhǎng)OA=6,底面圓的半徑為,一只小蟲(chóng)在圓線底面的點(diǎn)A處繞圓錐側(cè)面一周又回到點(diǎn)A處,則小蟲(chóng)所走的最短路程為_(kāi)__________(結(jié)果保留根號(hào))10、如圖,在中,點(diǎn)是的中點(diǎn),連接交弦于點(diǎn),若,,則的長(zhǎng)是______.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,內(nèi)接于,,,則的直徑等于多少?2、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動(dòng),且保持,的中點(diǎn)在運(yùn)動(dòng)過(guò)程中構(gòu)成什么圖形,請(qǐng)說(shuō)明理由.3、在平面直角坐標(biāo)系中,對(duì)于點(diǎn),給出如下定義:當(dāng)點(diǎn)滿足時(shí),稱點(diǎn)Q是點(diǎn)P的等和點(diǎn).已知點(diǎn).(1)在,,中,點(diǎn)P的等和點(diǎn)有______;(2)點(diǎn)A在直線上,若點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),求點(diǎn)A的坐標(biāo);(3)已知點(diǎn)和線段MN,對(duì)于所有滿足的點(diǎn)C,線段MN上總存在線段PC上每個(gè)點(diǎn)的等和點(diǎn).若MN的最小值為5,直接寫(xiě)出b的取值范圍.4、如圖,AB為⊙O的直徑,C、D為⊙O上的兩個(gè)點(diǎn),==,連接AD,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.(1)求證:DE是⊙O的切線.(2)若直徑AB=6,求AD的長(zhǎng).5、如圖,為的直徑,為上一點(diǎn),和過(guò)點(diǎn)的切線互相垂直,垂足為.(1)求證:平分;(2)若,,試求的半徑.-參考答案-一、單選題1、D【解析】【分析】根據(jù)作圖過(guò)程可知:AD是⊙O的直徑,=,根據(jù)垂徑定理即可判斷A、B、C正確,再根據(jù)DC=OD,可得AD=2CD,進(jìn)而可判斷D選項(xiàng).【詳解】解:根據(jù)作圖過(guò)程可知:AD是⊙O的直徑,∴∠ABD=90°,∴A選項(xiàng)正確;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B選項(xiàng)正確;根據(jù)垂徑定理,得AD⊥BC,∴C選項(xiàng)正確;∵DC=OD,∴AD=2CD,∴D選項(xiàng)錯(cuò)誤.故選:D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖、含30度角的直角三角形、垂徑定理、圓周角定理,解決本題的關(guān)鍵是熟練掌握相關(guān)知識(shí)點(diǎn).2、C【解析】【分析】根據(jù)垂徑定理得出CM=DM,再由已知條件得出圓的半徑為5,在Rt△OCM中,由勾股定理得出CM即可,從而得出CD.【詳解】解:∵AB是⊙O的直徑,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故選:C.【考點(diǎn)】本題考查了垂徑定理,圓周角定理以及勾股定理,掌握定理的內(nèi)容并熟練地運(yùn)用是解題的關(guān)鍵.3、A【解析】【分析】連接BD、OC、AG、AC,過(guò)O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,從而有弧AC=弧AD,由垂徑定理的推論即可判斷①的正誤;由CD⊥PB可得到∠P+∠PCD=90°,結(jié)合∠P=∠DCO、等邊對(duì)等角的知識(shí)等量代換可得到∠PCO=90°,據(jù)此可判斷②的正誤;假設(shè)OD∥GF成立,則可得到∠ABC=30°,判斷由已知條件能否得到∠ABC的度數(shù)即可判斷③的正誤;求出CF=AG,根據(jù)垂徑定理和三角形中位線的知識(shí)可得到CQ=OZ,通過(guò)證明△OCQ≌△BOZ可得到OQ=BZ,結(jié)合垂徑定理即可判斷④.【詳解】連接BD、OC、AG,過(guò)O作OQ⊥CF于Q,OZ⊥BG于Z,∵OD=OB,∴∠ABD=∠ODB,∵∠AOD=∠OBD+∠ODB=2∠OBD,∵∠AOD=2∠ABC,∴∠ABC=∠ABD,∴弧AC=弧AD,∵AB是直徑,∴CD⊥AB,∴①正確;∵CD⊥AB,∴∠P+∠PCD=90°,∵OD=OC,∴∠OCD=∠ODC=∠P,∴∠PCD+∠OCD=90°,∴∠PCO=90°,∴PC是切線,∴②正確;假設(shè)OD∥GF,則∠AOD=∠FEB=2∠ABC,∴3∠ABC=90°,∴∠ABC=30°,已知沒(méi)有給出∠B=30°,∴③錯(cuò)誤;∵AB是直徑,∴∠ACB=90°,∵EF⊥BC,∴AC∥EF,∴弧CF=弧AG,∴AG=CF,∵OQ⊥CF,OZ⊥BG,∴CQ=AG,OZ=AG,BZ=BG,∴OZ=CQ,∵OC=OB,∠OQC=∠OZB=90°,∴△OCQ≌△BOZ,∴OQ=BZ=BG,∴④正確.故選A.【考點(diǎn)】本題是圓的綜合題,考查了垂徑定理及其推論,切線的判定,等腰三角形的性質(zhì),平行線的性質(zhì),全等三角形的判定與性質(zhì).解答本題的關(guān)鍵是熟練掌握?qǐng)A的有關(guān)知識(shí)點(diǎn).4、B【解析】【分析】如圖所示,取AB的中點(diǎn)N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時(shí),OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點(diǎn)N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時(shí),OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點(diǎn),∴ON=,又∵M(jìn)為AC的中點(diǎn),∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時(shí),OM=ON+MN最大.5、B【解析】【分析】根據(jù)弧的分類、圓的性質(zhì)逐一判斷即可.【詳解】解:①直徑是最長(zhǎng)的弦,故正確;②最長(zhǎng)的弦才是直徑,故錯(cuò)誤;③過(guò)圓心的任一直線都是圓的對(duì)稱軸,故正確;④半圓是弧,但弧不一定是半圓,故錯(cuò)誤,正確的有兩個(gè),故選B.【考點(diǎn)】本題考查了對(duì)圓的認(rèn)識(shí),熟知弦的定義、弧的分類是本題的關(guān)鍵.6、B【解析】【分析】連接BO,根據(jù)圓周角定理可得,再由圓內(nèi)接三角形的性質(zhì)可得OB垂直平分AC,再根據(jù)正弦的定義求解即可.【詳解】如圖,連接OB,∵是的內(nèi)接三角形,∴OB垂直平分AC,∴,,又∵,∴,∴,又∵AD=8,∴AO=4,∴,解得:,∴.故答案選B.【考點(diǎn)】本題主要考查了圓的垂徑定理的應(yīng)用,根據(jù)圓周角定理求角度是解題的關(guān)鍵.7、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點(diǎn)D是弧AC的中點(diǎn),可以得到∠DCA的度數(shù),直徑所對(duì)的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點(diǎn)D是弧AC的中點(diǎn),∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點(diǎn)】本題考查圓周角定理、圓心角、弧、弦的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.8、B【解析】【分析】過(guò)D作DE⊥AB垂足為E,先利用圓周角的性質(zhì)和角平分線的性質(zhì)得到DE=DC=1,再說(shuō)明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,設(shè)BE=BC=x,AB=AE+BE=x+,最后根據(jù)勾股定理列式求出x,進(jìn)而求得AB.【詳解】解:如圖:過(guò)D作DE⊥AB,垂足為E∵AB是直徑∴∠ACB=90°∵∠ABC的角平分線BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=設(shè)BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2則(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考點(diǎn)】本題主要考查了圓周角定理、角平分線的性質(zhì)以及勾股定理等知識(shí)點(diǎn),靈活應(yīng)用相關(guān)知識(shí)成為解答本題的關(guān)鍵.9、D【解析】【分析】首先連接OA,OB,由PA,PB為⊙O的切線,根據(jù)切線的性質(zhì),即可得∠OAP=∠OBP=90°,又由圓周角定理,可求得∠AOB的度數(shù),繼而可求得答案.【詳解】解:連接OA,OB,∵PA,PB為⊙O的切線,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故選:D.【考點(diǎn)】此題考查了切線的性質(zhì)與圓周角定理,注意掌握輔助線的作法和數(shù)形結(jié)合思想的應(yīng)用.10、A【解析】【分析】由∠AEC=90°知,點(diǎn)E在以AC為直徑的⊙M的上(不含點(diǎn)C、可含點(diǎn)N),從而得BE最短時(shí),即為連接BM與⊙M的交點(diǎn)(圖中點(diǎn)E′點(diǎn)),BE長(zhǎng)度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點(diǎn)、可含點(diǎn),最短時(shí),即為連接與的交點(diǎn)(圖中點(diǎn)點(diǎn)),在中,,,則.,長(zhǎng)度的最小值,故選:.【考點(diǎn)】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識(shí)點(diǎn),難度偏大,解題時(shí),注意輔助線的作法.二、填空題1、15【解析】【分析】連接AO,BO,根據(jù)圓周角定理得到∠AOB=24°,根據(jù)中心角的定義即可求解.【詳解】如圖,連接AO,BO,∴∠AOB=2∠ADB=24°∴這個(gè)正多邊形的邊數(shù)為=15故答案為:15.【考點(diǎn)】此題主要考查正多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理.2、3【解析】【分析】①根據(jù)點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn)可知,進(jìn)而可得;②根據(jù)一條弧所對(duì)的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對(duì)等角,可知只有當(dāng)和重合時(shí),,;④作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接,DF,此時(shí)的值最短,等于的長(zhǎng),然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當(dāng)和重合時(shí),,∴只有和重合時(shí),,③錯(cuò)誤;作關(guān)于的對(duì)稱點(diǎn),連接,交于點(diǎn),連接交于點(diǎn),此時(shí)的值最短,等于的長(zhǎng).連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值最小,最小值是10,∴④正確.故答案為:3.【考點(diǎn)】本題考查了圓的綜合知識(shí),涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握?qǐng)A的基本性質(zhì)并靈活運(yùn)用是解題關(guān)鍵.3、48【解析】【分析】根據(jù)切線長(zhǎng)定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長(zhǎng)公式計(jì)算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長(zhǎng)=AD+BC+AB+CD=24+24=48,故答案為:48.【考點(diǎn)】本題考查了切線長(zhǎng)定理,掌握從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等是解題的關(guān)鍵.4、3或5【解析】【分析】分類討論:當(dāng)點(diǎn)P在當(dāng)點(diǎn)P在射線OA時(shí)⊙P與CD相切,過(guò)P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動(dòng)了(8-2)cm后與CD相切,即可得到⊙P移動(dòng)所用的時(shí)間;當(dāng)點(diǎn)P在射線OB時(shí)⊙P與CD相切,過(guò)P作PE⊥CD與F,同前面一樣易得到此時(shí)⊙P移動(dòng)所用的時(shí)間.【詳解】當(dāng)點(diǎn)P在射線OA時(shí)⊙P與CD相切,如圖,過(guò)P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動(dòng)了(8-2)cm后與CD相切,∴⊙P移動(dòng)所用的時(shí)間==3(秒);當(dāng)點(diǎn)P在射線OB時(shí)⊙P與CD相切,如圖,過(guò)P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動(dòng)了(8+2)cm后與CD相切,∴⊙P移動(dòng)所用的時(shí)間==5(秒).故答案為3或5.【考點(diǎn)】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).5、【解析】【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得到BD=CD=9,則∠DBC=∠C=22°,然后根據(jù)扇形的面積公式計(jì)算.【詳解】解:∵∠ABC=90°,點(diǎn)D為邊AC的中點(diǎn),∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點(diǎn)】本題考查了扇形面積的計(jì)算:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長(zhǎng)).也考查了直角三角形斜邊上的中線性質(zhì).6、(2,6)【解析】【分析】此題涉及的知識(shí)點(diǎn)是平面直角坐標(biāo)系圖像性質(zhì)的綜合應(yīng)用.過(guò)點(diǎn)M作MF⊥CD于F,過(guò)C作CE⊥OA于E,在Rt△CMF中,根據(jù)勾股定理即可求得MF與EM,進(jìn)而就可求得OE,CE的長(zhǎng),從而求得C的坐標(biāo).【詳解】∵四邊形OCDB是平行四邊形,點(diǎn)B的坐標(biāo)為(16,0),CD∥OA,CD=OB=16,過(guò)點(diǎn)M作MF⊥CD于F,則過(guò)C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM?ME=OM?CF=10?8=2,連接MC,∴在Rt△CMF中,∴點(diǎn)C的坐標(biāo)為(2,6).故答案為(2,6).【考點(diǎn)】此題重點(diǎn)考察學(xué)生對(duì)坐標(biāo)與圖形性質(zhì)的實(shí)際應(yīng)用,勾股定理,注意數(shù)形結(jié)合思想在解題的關(guān)鍵.7、(2,3)【解析】【分析】根據(jù)A、B、C三點(diǎn)的坐標(biāo)建立如圖所示的坐標(biāo)系,計(jì)算出△ABC各邊的長(zhǎng)度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點(diǎn)G的坐標(biāo),證出點(diǎn)A與點(diǎn)G關(guān)于BD對(duì)稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點(diǎn)M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點(diǎn)M,過(guò)點(diǎn)M作ME⊥AB,過(guò)點(diǎn)M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點(diǎn)M的坐標(biāo).【詳解】解:根據(jù)A、B、C三點(diǎn)的坐標(biāo)建立如圖所示的坐標(biāo)系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當(dāng)y=0時(shí),x=3,即G(3,0),∴點(diǎn)A與點(diǎn)G關(guān)于BD對(duì)稱,射線BD是∠ABC的平分線,設(shè)點(diǎn)M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點(diǎn)M,過(guò)點(diǎn)M作ME⊥AB,過(guò)點(diǎn)M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點(diǎn)】本題考查三角形內(nèi)心、平面直角坐標(biāo)系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識(shí)點(diǎn),把握內(nèi)心是三角形內(nèi)接圓的圓心這個(gè)概念,靈活運(yùn)用各種知識(shí)求解即可.8、【解析】【分析】如圖,過(guò)點(diǎn)A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過(guò)點(diǎn)A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點(diǎn)】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關(guān)鍵.9、6【解析】【分析】利用圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的弧長(zhǎng)可得圓錐側(cè)面展開(kāi)圖的圓心角,求出側(cè)面展開(kāi)圖中兩點(diǎn)間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長(zhǎng)為2×=3,設(shè)圓錐的側(cè)面展開(kāi)圖的圓心角為n.∴,解得n=90°,如圖,AA′的長(zhǎng)就是小蟲(chóng)所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點(diǎn)】本題考查了圓錐的計(jì)算,考查圓錐側(cè)面展開(kāi)圖中兩點(diǎn)間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來(lái)求是解決本題的突破點(diǎn).10、8.【解析】【分析】連結(jié)OA,OB,點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點(diǎn)是的中點(diǎn),半徑交弦于點(diǎn),∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點(diǎn)】本題考查垂徑定理的推論,勾股定理,線段中點(diǎn)定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對(duì)的弦,勾股定理,線段中點(diǎn)定義是解題關(guān)鍵.三、解答題1、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點(diǎn)】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理,掌握這些知識(shí)點(diǎn)是解題關(guān)鍵.2、(1)3;(2)在運(yùn)動(dòng)過(guò)程中,點(diǎn)運(yùn)動(dòng)的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長(zhǎng);(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點(diǎn)在中,,,圓心到弦的距離為.由知:是弦的中點(diǎn)中點(diǎn)在運(yùn)動(dòng)過(guò)程中始終保持∴據(jù)圓的定義,在運(yùn)動(dòng)過(guò)程中,點(diǎn)運(yùn)動(dòng)的軌跡是以為圓心,為半徑的圓.【考點(diǎn)】考查垂徑定理,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.3、(1),;(2);(3).【解析】【分析】(1)根據(jù)新定義計(jì)算即可;(2)由(1)可知,P的等和點(diǎn)縱坐標(biāo)比橫坐標(biāo)大2,根據(jù)等和點(diǎn)的定義,A的橫坐標(biāo)比縱坐標(biāo)大2,由此可得方程,求解即可;(3)因?yàn)榫€段MN上總存在線段PC上每個(gè)點(diǎn)的等和點(diǎn).且MN的最小值為5,所以PC的最大距離不能超過(guò)5,分別找到點(diǎn)P和點(diǎn)C的等和點(diǎn)所在的區(qū)域或直線,然后得到MN取得最大值時(shí),b的邊界即可.(1)解:由題意可知:∵,∴點(diǎn)Q1是點(diǎn)P的等和點(diǎn);∵,∴點(diǎn)Q2不是點(diǎn)P的等和點(diǎn);∵,∴點(diǎn)Q3是點(diǎn)P的等和點(diǎn);∴點(diǎn)P的等和點(diǎn)有,,(2)解:設(shè),由(1)可知,P的等和點(diǎn)縱坐標(biāo)比橫坐標(biāo)大2,∵點(diǎn)P的等和點(diǎn)也是點(diǎn)A的等和點(diǎn),∴A的橫坐標(biāo)比縱坐標(biāo)大2,則,解之得:,故,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遺體防腐整容師崗前考核試卷及答案
- 《國(guó)際金融》測(cè)試題附答案
- 全國(guó)獸醫(yī)考試試題及答案
- 醫(yī)師考核法律法規(guī)(醫(yī)院法律法規(guī)考試試題和答案)
- 安全考試試卷及答案大全
- 土建工程師面試試題(含答案)
- 營(yíng)銷培訓(xùn)試題及答案大全
- 消防安全技術(shù)綜合能力測(cè)試題及答案
- 高頻領(lǐng)導(dǎo)力協(xié)會(huì)面試題及答案
- 護(hù)士急診急救試題及答案
- 印刷行業(yè)安全培訓(xùn)班課件
- 《慢性胃炎診療》課件
- 北京市延慶區(qū)2026屆八年級(jí)物理第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析
- 繼電器性能測(cè)試及故障診斷方案
- 酒店清欠協(xié)議書(shū)模板模板
- 長(zhǎng)者探訪義工培訓(xùn)
- 地下室結(jié)構(gòu)加固技術(shù)方案
- 人教版高一必修二英語(yǔ)單詞表
- 2026年高考數(shù)學(xué)一輪復(fù)習(xí)周測(cè)卷及答案解析:第9周 數(shù)列的概念、等差與等比數(shù)列
- 電廠清潔生產(chǎn)管理制度
- 第五單元第22課-健康生活新設(shè)件人教版初中信息科技八年級(jí)全一冊(cè)
評(píng)論
0/150
提交評(píng)論