版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省青州市中考數(shù)學(xué)考試彩蛋押題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.2、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的3、如圖是由5個(gè)相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.4、關(guān)于函數(shù),下列說法:①函數(shù)的最小值為1;②函數(shù)圖象的對稱軸為直線x=3;③當(dāng)x≥0時(shí),y隨x的增大而增大;④當(dāng)x≤0時(shí),y隨x的增大而減小,其中正確的有()個(gè).A.1 B.2 C.3 D.45、若m,n是方程x2-x-2022=0的兩個(gè)根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(
)A.2023 B.2022 C.2021 D.2020二、多選題(5小題,每小題3分,共計(jì)15分)1、已知,為半徑是3的圓周上兩點(diǎn),為的中點(diǎn),以線段,為鄰邊作菱形,頂點(diǎn)恰在該圓直徑的三等分點(diǎn)上,則該菱形的邊長為(
)A. B. C. D.2、下列條件中,不能確定一個(gè)圓的是(
)A.圓心與半徑 B.直徑C.平面上的三個(gè)已知點(diǎn) D.三角形的三個(gè)頂點(diǎn)3、如果一種變換是將拋物線向右平移2個(gè)單位或向上平移1個(gè)單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、如圖,是半圓的直徑,半徑于點(diǎn),為半圓上一點(diǎn),,與交于點(diǎn),連接,,給出以下四個(gè)結(jié)論,其中正確的是(
)A.平分 B. C. D.5、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點(diǎn).則以下結(jié)論正確的有(
)A.B.當(dāng)時(shí),y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點(diǎn)D.若線段AB上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),則a的取值范圍是第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、要利用一面很長的圍墻和100米長的隔離欄建三個(gè)如圖所示的矩形羊圈,若計(jì)劃建成的三個(gè)羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設(shè)AB=x米,根據(jù)題意可列出方程的為_________.2、二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)對應(yīng)值列表如下:x…-3-2-101…y…-4-3-4-7-12…則該圖象的對稱軸是___________3、若拋物線的圖像與軸有交點(diǎn),那么的取值范圍是________.4、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.5、如圖,在中,的半徑為點(diǎn)是邊上的動(dòng)點(diǎn),過點(diǎn)作的一條切線(其中點(diǎn)為切點(diǎn)),則線段長度的最小值為____.四、簡答題(2小題,每小題10分,共計(jì)20分)1、新冠肺炎疫情期間,我國各地采取了多種方式進(jìn)行預(yù)防.其中,某地運(yùn)用無人機(jī)規(guī)勸居民回家.如圖,無人機(jī)于空中A處測得某建筑頂部B處的仰角為,測得該建筑底部C處的俯角為.若無人機(jī)的飛行高度為,求該建筑的高度(結(jié)果取整數(shù)),參考數(shù)據(jù):,,.2、拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,﹣3).點(diǎn)P為拋物線y=x2+bx+c上的一個(gè)動(dòng)點(diǎn).過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E.(1)求b、c的值;(2)設(shè)點(diǎn)F在拋物線y=x2+bx+c的對稱軸上,當(dāng)△ACF的周長最小時(shí),直接寫出點(diǎn)F的坐標(biāo);(3)在第一象限,是否存在點(diǎn)P,使點(diǎn)P到直線BC的距離是點(diǎn)D到直線BC的距離的5倍?若存在,求出點(diǎn)P所有的坐標(biāo);若不存在,請說明理由.五、解答題(4小題,每小題10分,共計(jì)40分)1、用適當(dāng)?shù)姆椒ń夥匠蹋?1)(1-x)2-2(x-1)-35=0;(2)x2+4x-2=0.2、如圖,在平面直角坐標(biāo)系中,△ABC的BC邊與x軸重合,頂點(diǎn)A在y軸的正半軸上,線段OB,OC()的長是關(guān)于x的方程的兩個(gè)根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸,垂足為D,PD與直線AB交于點(diǎn)Q,設(shè)△CPQ的面積為S(),點(diǎn)P的橫坐標(biāo)為a,求S與a的函數(shù)關(guān)系式;(3)點(diǎn)M的坐標(biāo)為,當(dāng)△MAB為直角三角形時(shí),直接寫出m的值.3、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.4、已知x1,x2是關(guān)于x的一元二次方程x2-4mx+4m2-9=0的兩實(shí)數(shù)根.(1)若這個(gè)方程有一個(gè)根為-1,求m的值;(2)若這個(gè)方程的一個(gè)根大于-1,另一個(gè)根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.-參考答案-一、單選題1、B【分析】根據(jù)“把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形”及“如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點(diǎn)睛】本題主要考查中心對稱圖形及軸對稱圖形的識(shí)別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關(guān)鍵.2、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.3、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個(gè)正方形,第二層左側(cè)有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.4、B【解析】【分析】根據(jù)所給函數(shù)的頂點(diǎn)式得出函數(shù)圖象的性質(zhì)從而判斷選項(xiàng)的正確性.【詳解】解:∵,∴該函數(shù)圖象開口向上,有最小值1,故①正確;函數(shù)圖象的對稱軸為直線,故②錯(cuò)誤;當(dāng)x≥0時(shí),y隨x的增大而增大,故③正確;當(dāng)x≤﹣3時(shí),y隨x的增大而減小,當(dāng)﹣3≤x≤0時(shí),y隨x的增大而增大,故④錯(cuò)誤.故選:B.【考點(diǎn)】本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)函數(shù)解析式分析出函數(shù)圖象的性質(zhì).5、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個(gè)根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點(diǎn)】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.二、多選題1、BD【解析】【分析】過B作直徑,連接AC交AO與E,再根據(jù)兩種情況求出BD的兩個(gè)長度,再求得OD,OE,DE的值連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】∵點(diǎn)B為的中點(diǎn)∴BD⊥AC①如圖∵點(diǎn)D恰再該圓直徑的三等分點(diǎn)上∴BD==2∴OD=OB-BD=1∵四邊形ABCD是菱形∴DE==1∴OE=2連接OC∵CE==∴邊CD=②如下圖BD==4同理可得,OD=1,OE=1,DE=2,連接OC,∵CE==∴CD=故選:BD【考點(diǎn)】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確地作出圖形是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,已知圓心和直徑所作的圓是唯一的進(jìn)行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個(gè)圓,不符合題意;B、已知直徑能確定一個(gè)圓,不符合題意;C、平面上的三個(gè)已知點(diǎn),不能確定一個(gè)圓,符合題意;D、已知三角形的三個(gè)頂點(diǎn),能確定一個(gè)圓,不符合題意;故選C.【考點(diǎn)】本題考查了確定圓的條件,解題的關(guān)鍵是分類討論.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個(gè)單位得到y(tǒng)=x2,再向上平移1個(gè)單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個(gè)單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個(gè)單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個(gè)單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個(gè)單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個(gè)單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.4、ABCD【解析】【分析】根據(jù)圓周角定理即可得出平分,證明全等即可得到,根據(jù)即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點(diǎn)】本題主要考查了圓周角定理、直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.5、ACD【解析】【分析】求得頂點(diǎn)坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯(cuò)誤;二次函數(shù)是不為0的常數(shù))的頂點(diǎn),即可判斷③錯(cuò)誤;根據(jù)題意時(shí),時(shí),即可判斷④正確.【詳解】解:二次函數(shù),頂點(diǎn)為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點(diǎn),拋物線開口向上,,故①正確;時(shí),隨的增大而增大,故②錯(cuò)誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點(diǎn),故③正確;線段上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且對稱軸為直線,∴當(dāng)時(shí),,當(dāng)時(shí),,,解得,故④正確;故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.三、填空題1、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據(jù)矩形面積列方程即可.【詳解】解:設(shè)AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點(diǎn)】本題主要考查了一元二次方程的實(shí)際問題,解決問題的關(guān)鍵是通過圖形找到對應(yīng)關(guān)系量,根據(jù)等量關(guān)系式列方程.2、【解析】【分析】根據(jù)二次函數(shù)的圖象具有對稱性和表格中的數(shù)據(jù),可以計(jì)算出該函數(shù)圖象的對稱軸.【詳解】解:由表格可得,當(dāng)x取-3和-1時(shí),y值相等,該函數(shù)圖象的對稱軸為直線,故答案為:.【考點(diǎn)】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的對稱性解答.3、【解析】【分析】由拋物線的圖像與軸有交點(diǎn)可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點(diǎn)∴令,有,即該方程有實(shí)數(shù)根∴∴.故答案是:【考點(diǎn)】本題考查了二次函數(shù)與軸的交點(diǎn)情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.4、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.5、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時(shí),PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長,然后再運(yùn)用等面積法求得OP的長,最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時(shí),如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時(shí)、線段PQ最短是解答本題的關(guān)鍵.四、簡答題1、42m【解析】【分析】如圖,過點(diǎn)A作,垂足為E.利用,求解即可.【詳解】解:如圖,過點(diǎn)A作,垂足為E.由題意可知,,,.在中,,∴.在中,,.∵,∴.答:該建筑的高度約為.【考點(diǎn)】本題考查了解斜三角形,通過作高化斜三角形為直角三角形,并準(zhǔn)確求解是解題的關(guān)鍵.2、(1)(2)(3)存在,P的坐標(biāo)為【解析】【分析】(1)把A、C點(diǎn)的坐標(biāo)代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點(diǎn)F,此時(shí)ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點(diǎn)坐標(biāo)便可.(3)設(shè)P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點(diǎn)的坐標(biāo)代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點(diǎn)F,連接AF,如圖1,此時(shí),AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時(shí)ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設(shè)直線BC的解析式為得解得∴直線BC的解析式為:∴當(dāng)時(shí),(3)解:設(shè)P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗(yàn),,即故m=5∴點(diǎn)P的坐標(biāo)為P(5,12).故存在點(diǎn)P,使點(diǎn)P到直線BC的距離是點(diǎn)D到直線BC的距離的5倍,其P點(diǎn)坐標(biāo)為【考點(diǎn)】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應(yīng)用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.五、解答題1、(1)x1=8,x2=-4(2)x1=-2,x2=--2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移項(xiàng),而后配方,等號左右斗毆配上一次項(xiàng)系數(shù)一半的平方.(1)原方程可變形為(x-1-7)(x-1+5)=0,x-8=0或x+4=0,∴x1=8,x2=-4;(2)移項(xiàng),得x2+4x=2,配方,得x2+4x+4=6,即(x+2)2=6,兩邊開平方,得x+2=±,∴x1=-2,x2=--2.【考點(diǎn)】本題考查了用適當(dāng)方法解一元二次方程,解決問題的關(guān)鍵是先考慮直接開平方法分解因式法,而后再考慮配方法或公式法.2、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點(diǎn)B,點(diǎn)C坐標(biāo)和OA的長度,進(jìn)而得到點(diǎn)A坐標(biāo),最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點(diǎn)A,點(diǎn)B坐標(biāo)使用待定系數(shù)法求出直線AB的解析式,根據(jù)直線AB解析式和直線AC解析式求出點(diǎn)P,Q,D坐標(biāo),進(jìn)而求出PQ和CD的長度,然后根據(jù)三角形面積公式求出S,最后對a的值進(jìn)行分類討論即可;(3)根據(jù)△MAB的直角頂點(diǎn)進(jìn)行分類討論,然后根據(jù)勾股定理求解即可.(1)解:解方程得,,∵線段OB,OC()的長是關(guān)于x的方程的兩個(gè)根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,設(shè)直線AC的解析式為,把點(diǎn),代入得,解得,∴直線AC的解析式為;(2)解:設(shè)直線AB的解析式為y=px+q,把,代入直線AB解析式得,解得,∴直線AB的解析式為,∵PD⊥x軸,垂足為D,PD與直線AB交于點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為a,∴,,,∴,,∴,當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)C重合時(shí),即當(dāng)a=0或時(shí),此時(shí)S=0,不符合題意,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,∴;(3)解:∵,,,∴,,,當(dāng)∠MAB=90°時(shí),,∴,解得,當(dāng)∠ABM=90°時(shí),,∴,解得m=7,當(dāng)∠AMB=90°時(shí),,∴,解得,,∴m的值為-3或-1或2或7.【考點(diǎn)】本題考查解一元二次方程、待定系數(shù)法求一次函數(shù)解析式、三角形面積公式、勾股定理,正確應(yīng)用分類討論思想是解題關(guān)鍵.3、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年智能配酒系統(tǒng)項(xiàng)目投資計(jì)劃書
- 鋼結(jié)構(gòu)、網(wǎng)架和索膜結(jié)構(gòu)安裝工程方案
- 2025年學(xué)??倓?wù)處年度工作總結(jié)及計(jì)劃
- 2025年機(jī)場安檢員安檢規(guī)程實(shí)操試題及答案
- 2025年醫(yī)學(xué)裝備管理制度及相關(guān)法規(guī)培訓(xùn)考試題及答案
- 放射科質(zhì)量與安全管理工作方案
- 混凝土產(chǎn)生裂縫的原因
- 2025年電力行業(yè)配電箱絕緣電阻檢測考核試卷及參考答案
- 建設(shè)工程施工合同糾紛要素式起訴狀模板關(guān)鍵訴求明確
- 監(jiān)理合同糾紛專用!建設(shè)工程施工合同糾紛要素式起訴狀模板
- 急腹癥的識(shí)別與護(hù)理
- 凈菜加工工藝流程與質(zhì)量控制要點(diǎn)
- 2025年新能源電力系統(tǒng)仿真技術(shù)及應(yīng)用研究報(bào)告
- 第02講排列組合(復(fù)習(xí)講義)
- 大型商業(yè)綜合體消防安全應(yīng)急預(yù)案
- 《砂漿、混凝土用低碳劑》
- 2025年社區(qū)工作總結(jié)及2026年工作計(jì)劃
- 無人機(jī)性能評估與測試計(jì)劃
- 2025年保安員(初級)考試模擬100題及答案(一)
- 湖北省新八校協(xié)作體2025-2026學(xué)年度上學(xué)期高三10月月考 英語試卷(含答案詳解)
- 酒駕滿分考試題庫及答案2025
評論
0/150
提交評論