河北省臨城縣2026屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第1頁
河北省臨城縣2026屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第2頁
河北省臨城縣2026屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第3頁
河北省臨城縣2026屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第4頁
河北省臨城縣2026屆數(shù)學(xué)九上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河北省臨城縣2026屆數(shù)學(xué)九上期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖1,在△ABC中,AB=BC,AC=m,D,E分別是AB,BC邊的中點,點P為AC邊上的一個動點,連接PD,PB,PE.設(shè)AP=x,圖1中某條線段長為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是()A.PD B.PB C.PE D.PC2.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.33.如圖是用圍棋棋子在6×6的正方形網(wǎng)格中擺出的圖案,棋子的位置用有序數(shù)對表示,如A點為(5,1),若再擺一黑一白兩枚棋子,使這9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則下列擺放正確的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)4.已知⊙O半徑為3,M為直線AB上一點,若MO=3,則直線AB與⊙O的位置關(guān)系為()A.相切 B.相交 C.相切或相離 D.相切或相交5.關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則a的取值范圍是()A.a(chǎn)>-1 B. C. D.a(chǎn)>-1且6.已知函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列5個結(jié)論,其中正確的結(jié)論有()①abc<0②3a+c>0③4a+2b+c<0④2a+b=0⑤b2>4acA.2 B.3 C.4 D.57.現(xiàn)有兩組相同的牌,每組三張且大小一樣,三張牌的牌面數(shù)字分別是1、2、3,從每組牌中各摸出一張牌.兩張牌的牌面數(shù)字之和等于4的概率是()A. B. C. D.8.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的直三棱柱紙盒,則該紙盒側(cè)面積的最大值是()A.cm2 B.cm2 C.cm2 D.cm29.拋物線的對稱軸是()A.直線=-1 B.直線=1 C.直線=-2 D.直線=210.如圖,AB為⊙O的直徑,點C、D在⊙O上,∠BAC=50°,則∠ADC為()A.40° B.50° C.80° D.100°二、填空題(每小題3分,共24分)11.反比例函數(shù)在第一象限內(nèi)的圖象如圖,點是圖象上一點,垂直軸于點,如果的面積為4,那么的值是__________.12.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當(dāng)點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.13.反比例函數(shù)的圖象在第象限.14.已知反比例函數(shù)的圖象經(jīng)過點,若點在此反比例函數(shù)的圖象上,則________.15.已知函數(shù)的圖象如圖所示,若直線與該圖象恰有兩個不同的交點,則的取值范圍為_____.16.如圖,四邊形ABCD、AEFG都是正方形,且∠BAE=45°,連接BE并延長交DG于點H,若AB=4,AE=,則線段BH的長是_____.17.若是方程的一個根,則代數(shù)式的值等于______.18.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.三、解答題(共66分)19.(10分)已知:在Rt△ABC中,∠BAC=90°,AB=AC,點D為BC邊中點.點M為線段BC上的一個動點(不與點C,點D重合),連接AM,將線段AM繞點M順時針旋轉(zhuǎn)90°,得到線段ME,連接EC.(1)如圖1,若點M在線段BD上.①依據(jù)題意補全圖1;②求∠MCE的度數(shù).(2)如圖2,若點M在線段CD上,請你補全圖形后,直接用等式表示線段AC、CE、CM之間的數(shù)量關(guān)系.20.(6分)感知:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,過點D作DE⊥CB交CB的延長線于點E,連接CD.(1)求證:△ACB≌△BED;(2)△BCD的面積為(用含m的式子表示).拓展:如圖②,在一般的Rt△ABC,∠ACB=90°,BC=m,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,用含m的式子表示△BCD的面積,并說明理由.應(yīng)用:如圖③,在等腰△ABC中,AB=AC,BC=8,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,則△BCD的面積為;若BC=m,則△BCD的面積為(用含m的式子表示).21.(6分)甲乙兩人參加一個幸運挑戰(zhàn)活動,活動規(guī)則是:一個布袋里裝有3個只有顏色不同的球,其中2個紅球,1個白球.甲從布袋中摸出一個球,記下顏色后放回,攪勻,乙再摸出一個球,若顏色相同,則挑戰(zhàn)成功.(1)用列表法或樹狀圖法,表示所有可能出現(xiàn)的結(jié)果.(2)求兩人挑戰(zhàn)成功的概率.22.(8分)如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關(guān)系式;(2)設(shè)點P是直線l上的一個動點,當(dāng)點P到點A、點B的距離之和最短時,求點P的坐標(biāo);(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標(biāo).23.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作AB的垂線交AC的延長線于點F.(1)求證:;(2)過點C作CG⊥BF于G,若AB=5,BC=2,求CG,F(xiàn)G的長.24.(8分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=1.(1)求拋物線的函數(shù)表達式.(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.25.(10分)已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連結(jié)AC,過點D作DE⊥AC,垂足為E.(1)求證:DC=BD(2)求證:DE為⊙O的切線26.(10分)如圖,CD為⊙O的直徑,弦AB交CD于點E,連接BD、OB.(1)求證:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半徑長.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】觀察可得,點P在線段AC上由A到C的運動中,線段PE逐漸變短,當(dāng)EP⊥AC時,PE最短,過垂直這個點后,PE又逐漸變長,當(dāng)AP=m時,點P停止運動,符合圖像的只有線段PE,故選C.點睛:本題考查了動點問題的函數(shù)圖象,對于此類問題來說是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.2、D【分析】找到最簡公分母,去分母后得到關(guān)于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當(dāng)x=1時,x2﹣4≠0,所以x=1是原方程的解;當(dāng)x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產(chǎn)生.3、D【分析】利用軸對稱圖形以及中心對稱圖形的性質(zhì)即可解答.【詳解】如圖所示:黑(3,1),白(3,3).故選D.此題主要考查了旋轉(zhuǎn)變換以及軸對稱變換,正確把握圖形的性質(zhì)是解題關(guān)鍵.4、D【解析】試題解析“因為垂線段最短,所以圓心到直線的距離小于等于1.此時和半徑1的大小不確定,則直線和圓相交、相切都有可能.故選D.點睛:直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系:若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離.5、D【解析】利用一元二次方程的定義及根的判別式列不等式a≠1且△=22﹣4a×(﹣1)>1,從而求解.【詳解】解:根據(jù)題意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故選D.本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>1時,方程有兩個不相等的兩個實數(shù)根;當(dāng)△=1時,方程有兩個相等的兩個實數(shù)根;當(dāng)△<1時,方程無實數(shù)根.6、B【解析】根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】①由拋物線的對稱軸可知:1,∴ab<1.∵拋物線與y軸的交點可知:c>1,∴abc<1,故①正確;②∵1,∴b=﹣2a,∴由圖可知x=﹣1,y<1,∴y=a﹣b+c=a+2a+c=3a+c<1,故②錯誤;③由(﹣1,1)關(guān)于直線x=1對稱點為(3,1),(1,1)關(guān)于直線x=1對稱點為(2,1),∴x=2,y>1,∴y=4a+2b+c>1,故③錯誤;④由②可知:2a+b=1,故④正確;⑤由圖象可知:△>1,∴b2﹣4ac>1,∴b2>4ac,故⑤正確.故選B.本題考查了二次函數(shù)的圖象,解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),本題屬于中等題型.7、B【分析】畫樹狀圖列出所有情況,看數(shù)字之和等于4的情況數(shù)占總情況數(shù)的多少即可.【詳解】畫樹狀圖得:則共有9種等可能的結(jié)果,其中兩張牌的牌面數(shù)字之和等于4的有3種結(jié)果,∴兩張牌的牌面數(shù)字之和等于4的概率為=,故選:B.本題考查列表法和樹狀圖法,解題的關(guān)鍵是可以不重復(fù)不遺漏的列出所有可能的結(jié)果.8、C【解析】試題解析:∵△ABC為等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵箏形ADOK≌箏形BEPF≌箏形AGQH,∴AD=BE=BF=CG=CH=AK.∵折疊后是一個三棱柱,∴DO=PE=PF=QG=QH=OK,四邊形ODEP、四邊形PFGQ、四邊形QHKO都為矩形.∴∠ADO=∠AKO=90°.連結(jié)AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.設(shè)OD=x,則AO=2x,由勾股定理就可以求出AD=x,∴DE=6-2x,∴紙盒側(cè)面積=3x(6-2x)=-6x2+18x,=-6(x-)2+,∴當(dāng)x=時,紙盒側(cè)面積最大為.故選C.考點:1.二次函數(shù)的應(yīng)用;2.展開圖折疊成幾何體;3.等邊三角形的性質(zhì).9、B【分析】根據(jù)題目所給的二次函數(shù)的頂點式直接得到函數(shù)圖象的對稱軸.【詳解】解:∵解析式為,∴對稱軸是直線.故選:B.本題考查二次函數(shù)的頂點式,解題的關(guān)鍵是根據(jù)二次函數(shù)的頂點式得到函數(shù)圖象的性質(zhì).10、A【解析】試題分析:先根據(jù)圓周角定理的推論得到∠ACB=90°,再利用互余計算出∠B=40°,然后根據(jù)圓周角定理求解.解:連結(jié)BC,如圖,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故選A.考點:圓周角定理.二、填空題(每小題3分,共24分)11、1【分析】利用反比例函數(shù)k的幾何意義得到|k|=4,然后利用反比例函數(shù)的性質(zhì)確定k的值.【詳解】解:∵△MOP的面積為4,∴|k|=4,∴|k|=1,∵反比例函數(shù)圖象的一支在第一象限,∴k>0,∴k=1,故答案為:1.本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是|k|,且保持不變.也考查了反比例函數(shù)的性質(zhì).12、3或1【分析】由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.13、二、四【解析】:∵k=-1<0,∴反比例函數(shù)y="-1/x"中,圖象在第二、四象限14、【分析】將點(1,3)代入y即可求出k+1的值,再根據(jù)k+1=xy解答即可.【詳解】∵反比例函數(shù)的圖象上有一點(1,3),∴k+1=1×3=6,又點(-3,n)在反比例函數(shù)的圖象上,∴6=-3×n,解得:n=-1.故答案為:-1.本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.15、【解析】直線與有一個交點,與有兩個交點,則有,時,,即可求解.【詳解】解:直線與該圖象恰有三個不同的交點,則直線與有一個交點,∴,∵與有兩個交點,∴,,∴,∴;故答案為.本題考查二次函數(shù)與一次函數(shù)的圖象及性質(zhì);能夠根據(jù)條件,數(shù)形結(jié)合的進行分析,可以確定的范圍.16、【分析】連結(jié)GE交AD于點N,連結(jié)DE,由于∠BAE=45°,AF與EG互相垂直平分,且AF在AD上,由可得到AN=GN=1,所以DN=4﹣1=3,然后根據(jù)勾股定理可計算出,則,解著利用計算出HE,所以BH=BE+HE.【詳解】解:連結(jié)GE交AD于點N,連結(jié)DE,如圖,∵∠BAE=45°,∴AF與EG互相垂直平分,且AF在AD上,∵,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,;由題意可得:△ABE相當(dāng)于逆時針旋轉(zhuǎn)90°得到△AGD,∴,∵,∴,∴.故答案是:.本題考查了正方形的性質(zhì),解題的關(guān)鍵是會運用勾股定理和等腰直角三角形的性質(zhì)進行幾何計算.17、1【分析】把代入已知方程,求得,然后得的值即可.【詳解】解:把代入已知方程得,∴,故答案為1.本題考查一元二次方程的解以及代數(shù)式求值,注意已知條件與待求代數(shù)式之間的關(guān)系.18、1【解析】根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當(dāng)實驗的所有可能結(jié)果不是有限個或結(jié)果個數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.三、解答題(共66分)19、(1)①見解析;②∠MCE=∠F=45°;(2)【分析】(1)①依據(jù)題意補全圖即可;②過點M作BC邊的垂線交CA延長線于點F,利用同角的余角相等,得到∠FMA=∠CME,再通過等腰三角形的判定得到FM=MC,再通過判斷,得到∠MCE的度數(shù).(2)通過證明,得到AF=EC,將轉(zhuǎn)化為,再在Rt△FMC中,利用邊角關(guān)系求出FC=,即可得到.【詳解】(1)①補全圖1:②解:過點M作BC邊的垂線交CA延長線于點F∵FM⊥BC∴∠FMC=90°∴∠FMA+∠AMC=90°∵將線段AM繞點M順時針旋轉(zhuǎn)90°,得到線段ME∴∠AME=90°,AM=ME∴∠CME+∠AMC=90°∴∠FMA=∠CME∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠F=∠FCM=45°∴FM=MC在△FMA和△CME中∴∴∠MCE=∠F=45°(2)解:過點M作BC邊的垂線交CA延長線于點F∵FM⊥BC∴∠FMC=90°∴∠FME+∠EMC=90°∵將線段AM繞點M順時針旋轉(zhuǎn)90°,得到線段ME∴∠AME=90°,AM=ME∴∠FME+∠AMF=90°∴∠EMC=∠AMF∵∠BAC=90°,AB=AC,∴∠FCM=45°∴∠MFC=90°-∠FCM=45°∴FM=MC在△FMA和△CME中∴∴AF=EC∴∵∠FCM=45°,∠FMC=90°∴FC=∴綜上所述,本題是旋轉(zhuǎn)圖形考查,掌握旋轉(zhuǎn)前后不變的量是解答此題的關(guān)鍵,涉及到的知識點相似的判定及性質(zhì)、等腰三角形的性質(zhì)等.20、感知:(1)詳見解析;(1)m1;拓展:m1,理由詳見解析;應(yīng)用:16,m1.【解析】感知:(1)由題意可得CA=CB,∠A=∠ABC=25°,由旋轉(zhuǎn)的性質(zhì)可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可證△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根據(jù)三角形面積求法可求△BCD的面積;拓展:作DG⊥CB交CB的延長線于G,可證△ACB≌△BGD,可得BC=DG=m,根據(jù)三角形面積求法可求△BCD的面積;應(yīng)用:過點A作AN⊥BC于N,過點D作DM⊥BC的延長線于點M,由等腰三角形的性質(zhì)可以得出BN=BC,由條件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面積公式就可以得出結(jié)論.【詳解】感知:證明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋轉(zhuǎn)的性質(zhì)可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案為m1,拓展:作DG⊥CB交CB的延長線于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m1,應(yīng)用:作AN⊥BC于N,DM⊥BC交CB的延長線于M,∴∠ANB=∠M=90°,BN=BC=2.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵線段BD是由線段AB旋轉(zhuǎn)得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=2.∴S△BCD=BC?DM=×8×2=16,若BC=m,則BN=DM=BC=m,∴S△BCD=BC?DM=×m×m=m1故答案為16,m1.本題考查了等腰三角形的性質(zhì),全等三角形的判定(AAS),全等三角形的性質(zhì),直角三角形的性質(zhì),面積計算,熟練掌握這些知識點是本題解題的關(guān)鍵.21、(1)見解析;(2).【分析】用列表法列舉出所有等可能出現(xiàn)的結(jié)果,從中找出顏色相同的結(jié)果數(shù),進而求出概率.【詳解】解:(1)用列表法表示所有可能出現(xiàn)的結(jié)果如下:(2)共有9種等可能出現(xiàn)的結(jié)果,其中顏色相同的有5種,∴P(顏色相同)=,答:獲勝的概率為.考查列表法或樹狀圖法求等可能事件發(fā)生的概率,使用此方法一定注意每一種結(jié)果出現(xiàn)的可能性是均等的,即為等可能事件.22、(1);(2)P(1,0);(3)M(1,)(1,)(1,﹣1)(1,0).【分析】(1)直接將A、B、C三點坐標(biāo)代入拋物線的解析式中求出待定系數(shù)即可;(2)由圖知:A.B點關(guān)于拋物線的對稱軸對稱,那么根據(jù)拋物線的對稱性以及兩點之間線段最短可知,直線l與x軸的交點,即為符合條件的P點;(3)由于△MAC的腰和底沒有明確,因此要分三種情況來討論:①MA=AC、②MA=MC、③AC=MC;可先設(shè)出M點的坐標(biāo),然后用M點縱坐標(biāo)表示△MAC的三邊長,再按上面的三種情況列式求解.【詳解】解:(1)將A(﹣1,0)、B(3,0)、C(0,﹣3)代入拋物線中,得:,解得:,故拋物線的解析式:.(2)當(dāng)P點在x軸上,P,A,B三點在一條直線上時,點P到點A、點B的距離之和最短,此時x==1,故P(1,0);(3)如圖所示:拋物線的對稱軸為:x==1,設(shè)M(1,m),已知A(﹣1,0)、C(0,﹣3),則:=,==,=10;①若MA=MC,則,得:=,解得:m=﹣1;②若MA=AC,則,得:=10,得:m=;③若MC=AC,則,得:=10,得:,;當(dāng)m=﹣6時,M、A、C三點共線,構(gòu)不成三角形,不合題意,故舍去;綜上可知,符合條件的M點,且坐標(biāo)為M(1,)(1,)(1,﹣1)(1,0).考點:二次函數(shù)綜合題;分類討論;綜合題;動點型.23、(1)見解析;(2)CF=,F(xiàn)G=,【分析】(1)連接AE,利用等腰三角形的三線合一的性質(zhì)證明∠EAB=∠EAC即可解決問題.(2)證明△BCG∽△ABE,可得,由此求出CG,再利用平行線分線段成比例定理求出CF,利用勾股定理即可求出FG.【詳解】(1)證明:連接AE.∵AB是直徑,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∴.(2)解:∵BF⊥AB,CG⊥BF,AE⊥BC∴∠CGB=∠AEB=∠ABF=90°,∵∠CBG+∠ABC=90°,∠ABC+∠BAE=90°,∴∠CBG=∠BAE,∴△BCG∽△ABE,∴,∴,∴CG=2,∵CG∥AB,∴,∴,∴CF=,∴FG===.此題主要考查圓與幾何綜合,解題的關(guān)鍵是熟知圓的基本性質(zhì)、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì).24、(1);(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論