版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
四川省資陽市雁江區(qū)2026屆數(shù)學九年級第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,直線,等腰的直角頂點在上,頂點在上,若,則()A.31° B.45° C.30° D.59°2.已知點是線段的黃金分割點,且,,則長是()A. B. C. D.3.若整數(shù)使關于的不等式組至少有4個整數(shù)解,且使關于的分式方程有整數(shù)解,那么所有滿足條件的的和是()A. B. C. D.4.已知拋物線的解析式為,則下列說法中錯誤的是()A.確定拋物線的開口方向與大小B.若將拋物線沿軸平移,則,的值不變C.若將拋物線沿軸平移,則的值不變D.若將拋物線沿直線:平移,則、、的值全變5.如圖,點,為直線上的兩點,過,兩點分別作軸的平行線交雙曲線()于、兩點.若,則的值為()A.12 B.7 C.6 D.46.下面的函數(shù)是反比例函數(shù)的是()A. B. C. D.7.如圖,為了測量池塘邊A、B兩地之間的距離,在線段AB的同側(cè)取一點C,連結(jié)CA并延長至點D,連結(jié)CB并延長至點E,使得A、B分別是CD、CE的中點,若DE=18m,則線段AB的長度是()A.9m B.12m C.8m D.10m8.如圖工人師傅砌門時,常用木條EF固定長方形門框ABCD,使其不變形,這樣做的根據(jù)是()A.兩點之間線段最短 B.兩點確定一條直線C.三角形具有穩(wěn)定性 D.長方形的四個角都是直角9.如圖,在中,點分別在邊上,且為邊延長線上一點,連接,則圖中與相似的三角形有()個A. B. C. D.10.如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<12),連接DE,當△BDE是直角三角形時,t的值為()A.4或5 B.4或7 C.4或5或7 D.4或7或9二、填空題(每小題3分,共24分)11.如圖,△ABC繞點B逆時針方向旋轉(zhuǎn)到△EBD的位置,∠A=20°,∠C=15°,E、B、C在同一直線上,則旋轉(zhuǎn)角度是_______.12.如圖,,直線a、b與、、分別相交于點A、B、C和點D、E、F.若AB=3,BC=5,DE=4,則EF的長為______.13.如圖,在中,,,點在邊上,,.點是線段上一動點,當半徑為的與的一邊相切時,的長為____________.14.設m是一元二次方程x2﹣x﹣2019=0的一個根,則m2﹣m+1的值為___.15.若一個正六邊形的周長為24,則該正六邊形的面積為▲.16.如圖,Rt△ABC中,∠C=90°,若AC=4,BC=3,則△ABC的內(nèi)切圓半徑r=_____.17.已知圓錐的底面半徑為3cm,母線長4cm,則它的側(cè)面積為cm1.18.如圖,在的矩形方框內(nèi)有一個不規(guī)則的區(qū)城(圖中陰影部分所示),小明同學用隨機的辦法求區(qū)域的面積.若每次在矩形內(nèi)隨機產(chǎn)生10000個點,并記錄落在區(qū)域內(nèi)的點的個數(shù),經(jīng)過多次試驗,計算出落在區(qū)域內(nèi)點的個數(shù)的平均值為6700個,則區(qū)域的面積約為___________.三、解答題(共66分)19.(10分)如圖,為的直徑,、為上兩點,且點為的中點,過點作的垂線,交的延長線于點,交的延長線于點.(1)求證:是的切線;(2)當,時,求的長.20.(6分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)畫出△ABC關于點B成中心對稱的圖形△A1BC1;(2)以原點O為位似中心,位似比為1:2,在y軸的左側(cè)畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2的坐標.21.(6分)課本上有如下兩個命題:命題1:圓的內(nèi)接四邊形的對角互補.命題2:如果一個四邊形兩組對角互補,那么該四邊形的四個頂點在同一個圓上.請判斷這兩個命題的真、假?并選擇其中一個說明理由.22.(8分)甲、乙兩名同學5次數(shù)學練習(滿分120分)的成績?nèi)缦卤恚海▎挝唬悍郑y試日期11月5日11月20日12月5日12月20日1月3日甲9697100103104乙10095100105100已知甲同學這5次數(shù)學練習成績的平均數(shù)為100分,方差為10分.(1)乙同學這5次數(shù)學練習成績的平均數(shù)為分,方差為分;(2)甲、乙都認為自已在這5次練習中的表現(xiàn)比對方更出色,請你分別寫出一條支持他們倆觀點的理由.23.(8分)如圖,為線段的中點,與交于點,,且交于,交于.(1)證明:.(2)連結(jié),如果,,,求的長.24.(8分)為了改善生活環(huán)境,近年來,無為縣政府不斷加大對城市綠化的資金投入,使全縣綠地面積不斷增加.從2016年底到2018年底,我縣綠地面積變化如圖所示,求我縣綠地面積的年平均增長率.25.(10分)如圖,點在以為直徑的上,的平分線交于點,過點作的平行線交的延長線于點.(1)求證:是的切線;(2)若,,求的長度.26.(10分)如圖,扇形OAB的半徑OA=4,圓心角∠AOB=90°,點C是弧AB上異于A、B的一點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結(jié)DE,過點C作弧AB所在圓的切線CG交OA的延長線于點G.(1)求證:∠CGO=∠CDE;(2)若∠CGD=60°,求圖中陰影部分的面積.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】過點B作BD//l1,,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:過點B作BD//l1,則∠α=∠CBD.
∵,
∴BD//,
∴∠β=∠DBA,
∵∠CBD+∠DBA=45°,
∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.
故選A.本題考查的是平行線的性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關鍵.2、C【分析】利用黃金分割比的定義即可求解.【詳解】由黃金分割比的定義可知∴故選C本題主要考查黃金分割比,掌握黃金分割比是解題的關鍵.3、A【分析】根據(jù)不等式組求出a的范圍,然后再根據(jù)分式方程求出a的取值范圍,綜合考慮確定a的值,再求和即可.【詳解】解不等式組得:∵至少有4個整數(shù)解∴,解得分式方程去分母得解得:∵分式方程有整數(shù)解,a為整數(shù)∴、、、∴、、、、、、、∵,∴又∵∴或滿足條件的的和是-13,故選A.本題考查了不等式組與分式方程,解題的關鍵是解分式方程時需要舍去增根的情況.4、D【分析】利用二次函數(shù)的性質(zhì)對A進行判斷;利用二次函數(shù)圖象平移的性質(zhì)對B、C、D進行判斷.【詳解】解:A、確定拋物線的開口方向與大小,說法正確;B、若將拋物線C沿y軸平移,則拋物線的對稱軸不變,開口大小、開口方向不變,即a,b的值不變,說法正確;C、若將拋物線C沿x軸平移,拋物線的開口大小、開口方向不變,即a的值不變,說法正確;D、若將拋物線C沿直線l:y=x+2平移,拋物線的開口大小、開口方向不變,即a不變,b、c的值改變,說法錯誤;故選:D.本題考查了二次函數(shù)圖象與幾何變換,由于拋物線平移后的形狀不變,所以a不變.5、C【分析】延長AC交x軸于E,延長BD交x軸于F.設A、B的橫坐標分別是a,b,點A、B為直線y=x上的兩點,A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.根據(jù)BD=2AC即可得到a,b的關系,然后利用勾股定理,即可用a,b表示出所求的式子從而求解.【詳解】延長AC交x軸于E,延長BD交x軸于F.設A、B的橫坐標分別是a,b.∵點A、B為直線y=x上的兩點,∴A的坐標是(a,a),B的坐標是(b,b).則AE=OE=a,BF=OF=b.∵C、D兩點在交雙曲線(x>0)上,則CE,DF,∴BD=BF﹣DF=b,AC=a.又∵BD=2AC,∴b2(a),兩邊平方得:b22=4(a22),即b24(a2)﹣1.在直角△OCE中,OC2=OE2+CE2=a2,同理OD2=b2,∴4OC2﹣OD2=4(a2)﹣(b2)=1.故選:C.本題考查了反比例函數(shù)與勾股定理的綜合應用,正確利用BD=2AC得到a,b的關系是關鍵.6、A【解析】一般地,如果兩個變量x、y之間的關系可以表示成y=或y=kx-1(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù),據(jù)此進行求解即可.【詳解】解:A、是反比例函數(shù),正確;
B、是二次函數(shù),錯誤;
C、是正比例函數(shù),錯誤;
D、是一次函數(shù),錯誤.
故選:A.本題考查了反比例函數(shù)的識別,容易出現(xiàn)的錯誤是把當成反比例函數(shù),要注意對反比例函數(shù)形式的認識.7、A【分析】根據(jù)三角形的中位線定理解答即可.【詳解】解:∵A、B分別是CD、CE的中點,DE=18m,∴AB=DE=9m,故選:A.本題考查了三角形的中位線定理:三角形的中位線平行于第三邊并且等于第三邊的一半.8、C【分析】根據(jù)三角形的穩(wěn)定性,可直接選擇.【詳解】加上EF后,原圖形中具有△AEF了,故這種做法根據(jù)的是三角形的穩(wěn)定性.
故選:C.9、D【分析】根據(jù)平行四邊形和平行線的性質(zhì),得出對應的角相等,再結(jié)合相似三角形的性質(zhì)即可得出答案.【詳解】∵EF∥CD,ABCD是平行四邊形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD為平行四邊形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ綜上共有4個三角形與△GAB相似故答案選擇D.本題考查的是相似三角形的判定,需要熟練掌握相似三角形的判定方法,此外,還需要掌握平行四邊形和平行線的相關知識.10、D【解析】由條件可求得AB=8,可知E點的運動路線為從A到B,再從B到AB的中點,當△BDE為直角三角形時,只有∠EDB=90°或∠DEB=90°,再結(jié)合△BDE和△ABC相似,可求得BE的長,則可求得t的值.【詳解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D為BC中點,∴BD=2cm,∵0≤t<12,∴E點的運動路線為從A到B,再從B到AB的中點,按運動時間分為0≤t≤8和8<t<12兩種情況,①當0≤t≤8時,AE=tcm,BE=BC-AE=(8-t)cm,當∠EDB=90°時,則有AC∥ED,∵D為BC中點,∴E為AB中點,此時AE=4cm,可得t=4;當∠DEB=90°時,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②當8<t<12時,則此時E點又經(jīng)過t=7秒時的位置,此時t=8+1=9;綜上可知t的值為4或7或9,故選:D.本題主要考查相似三角形的判定和性質(zhì),用t表示出線段的長,化動為靜,再根據(jù)相似三角形的對應邊成比例找到關于t的方程是解決這類問題的基本思路.二、填空題(每小題3分,共24分)11、35°【分析】根據(jù)旋轉(zhuǎn)角度的概念可得∠ABE為旋轉(zhuǎn)角度,然后根據(jù)三角形外角的性質(zhì)可進行求解.【詳解】解:由題意得:∠ABE為旋轉(zhuǎn)角度,∵∠A=20°,∠C=15°,E、B、C在同一直線上,∴∠ABE=∠A+∠C=35°;故答案為35°.本題主要考查旋轉(zhuǎn)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關鍵.12、【分析】直接根據(jù)平行線分線段成比例定理即可得.【詳解】,,,,解得,故答案為:.本題考查了平行線分線段成比例定理,熟記平行線分線段成比例定理是解題關鍵.13、或或【分析】根據(jù)勾股定理得到AB、AD的值,再分3種情況根據(jù)相似三角形性質(zhì)來求AP的值.【詳解】解:∵在中,,,,∴AD=在Rt△ACB中,,,,∴CB=6+10=16∵AB2=AC2+BC2AB=①當⊙P與BC相切時,設切點為E,連結(jié)PE,則PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA,∠C=∠AEP=90°∴△APE∽△ACB②當⊙P與AC相切時,設切點為F,連結(jié)PF,則PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD∽△FAP③當⊙P與BC相切時,設切點為G,連結(jié)PG,則PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD∽△GPD故答案為:或或5本題考查了利用相似三角形的性質(zhì)對應邊成比例來證明三角形邊的長.注意分清對應邊,不要錯位.14、2020.【分析】把x=m代入方程計算即可求解.【詳解】解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,則原式=2019+1=2020,故答案為2020.本題考查一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.15、【解析】根據(jù)題意畫出圖形,如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°.∵OB=OC,∴△OBC是等邊三角形.∴∠OBC=60°.∵正六邊形ABCDEF的周長為21,∴BC=21÷6=1.∴OB=BC=1,∴BM=OB·sin∠OBC=1·.∴.16、1【解析】如圖,設△ABC的內(nèi)切圓與各邊相切于D,E,F(xiàn),連接OD,OE,OF,則OE⊥BC,OF⊥AB,OD⊥AC,設半徑為r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1,∴△ABC的內(nèi)切圓的半徑為1,故答案為1.17、11π【解析】試題分析:圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑×母線.由題意得它的側(cè)面積.考點:圓錐的側(cè)面積點評:本題屬于基礎應用題,只需學生熟練掌握圓錐的側(cè)面積公式,即可完成.18、8.04【分析】先利用古典概型的概率公式求概率,再求區(qū)域A的面積的估計值.【詳解】解:由題意,∵在矩形內(nèi)隨機產(chǎn)生10000個點,落在區(qū)域A內(nèi)點的個數(shù)平均值為6700個,∴概率P=,∵4×3的矩形面積為12,∴區(qū)域A的面積的估計值為:0.67×12=8.04;故答案為:8.04;本題考查古典概型概率公式,考查學生的計算能力,屬于中檔題.三、解答題(共66分)19、(1)詳見解析;(2).【分析】(1)連接,如圖,由點為的中點可得,根據(jù)可得,可得,于是,進一步即可得出,進而可證得結(jié)論;(2)在中,利用解直角三角形的知識可求得半徑的長,進而可得AD的長,然后在中利用∠D的正弦即可求出結(jié)果.【詳解】解:(1)連接,如圖,∵點為的中點,∴,∴.∵,∴,∴.∴.∵,∴.∴,即.∴是的切線;(2)在中,∵,∴設,則,則,解得:.∴,,∴.在中,∵,∴.本題考查了圓的切線的判定、等腰三角形的性質(zhì)、平行線的判定和性質(zhì)以及解直角三角形的知識,屬于中檔題型,熟練掌握上述知識是解題的關鍵.20、(1)畫圖見解析;(2)畫圖見解析,C2的坐標為(﹣6,4).【解析】試題分析:利用關于點對稱的性質(zhì)得出的坐標進而得出答案;
利用關于原點位似圖形的性質(zhì)得出對應點位置進而得出答案.試題解析:(1)△A1BC1如圖所示.(2)△A2B2C2如圖所示,點C2的坐標為(-6,4).21、命題一、二均為真命題,證明見解析.【分析】利用圓周角定理可證明命題正確;利用反證法可證明命題2正確.【詳解】命題一、二均為真命題,命題1、命題2都是真命題.證明命題1:如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,連接OA、OC,∵∠B=∠1,∠D=∠2,而∠1+∠2=360°,∴∠B+∠D=×360°=180°,即圓的內(nèi)接四邊形的對角互補.本題考查了命題與定理:命題寫成“如果…,那么…”的形式,這時,“如果”后面接的部分是題設,“那么”后面解的部分是結(jié)論.命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.22、(1)100,10;(2)答案不唯一,如:甲的數(shù)學成績逐漸進步,更有潛力;乙的數(shù)學成績在100分以上(含100分)的次數(shù)更多.【分析】(1)根據(jù)平均數(shù)公式和方差公式計算即可;(2)通過成績逐漸的變化情況或100分以上(含100分)的次數(shù)分析即可.【詳解】解:(1)乙=乙=故答案為:100,10;(2)答案不唯一,如:甲的數(shù)學成績逐漸進步,更有潛力;乙的數(shù)學成績在100分以上(含100分)的次數(shù)更多.此題考查的是求平均數(shù)和方差,掌握平均數(shù)公式和方差公式是解決此題的關鍵.23、(1)見解析;(2)【分析】(1)由,可證∠AFM=∠BMG,從而可證;(2)當時,可得且,再根據(jù)可求BG,從而可求CF,CG,進而可求答案.【詳解】(1)證明:∵∴,又∵∴.解:(2)∵,∴且∵為的中點,∴又∵,∴∴∴,∴本題考查的是相似三角形的判定與性質(zhì)和勾股定理,熟練掌握相似三角形的相關知識與勾股定理是解題的關鍵.24、年平均增長率為10%.【分析】根據(jù)圖表可知2016年底城市綠地面積300公頃,2018年底城市綠地面積363公頃,設年平均增長率是,則2017年的綠地面積是,2018年的綠地面積是,即可列出方程解答.【詳解】解:設這兩年年平均增長率為x,則300(x+1)2=363,解得:x1=0.1,x2=﹣2.1(不符合實際意義,舍去)∴x=0.1=10%,答:年平均增長率為10%.本題考查數(shù)量平均變化率問題,解題的關鍵是正確列出一元二次方程.原來的數(shù)量為a,平均每次增長或降低的百分率為x的話,經(jīng)過第一次調(diào)整,就調(diào)整到,再經(jīng)過第二次調(diào)整就是.增長用“”,下降用“”.25、(1)見解析;(2)【分析】(1)連接OD,由為的直徑得到∠ACB=90,根據(jù)CD平分∠ACB及圓周角定理得到∠AOD=90,再根據(jù)DE∥AB推出OD⊥DE,即可得到是的切線;(2)過點C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面積法求出CH,求出OH,根據(jù)△CHM∽△DOM求出HM得到AM,再利用平行線證明△CAM∽△CED,即可求出DE.【詳解】(1)如圖,連接OD,∵為的直徑,∴∠ACB=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026湖北武漢東風汽車集團股份有限公司商用車事業(yè)部招聘備考考試試題附答案解析
- 2026年度淄博高新區(qū)事業(yè)單位面向退役大學生士兵公開招聘綜合類(專項)崗位工作人員備考考試題庫附答案解析
- 2026年福建南安市城鄉(xiāng)水務集團有限公司招聘30人備考考試試題附答案解析
- 2026廣東廣州市華南理工大學醫(yī)院合同制人員招聘2人備考考試題庫附答案解析
- 飼料生產(chǎn)企業(yè)巡查制度
- 2026北京市順義區(qū)衛(wèi)生健康委員會招聘事業(yè)單位高層次人才3人參考考試試題附答案解析
- 監(jiān)獄生產(chǎn)安全管理制度
- 2026年楚雄州武定縣公安局特巡警大隊招聘輔警(2人)備考考試試題附答案解析
- 2026年阜陽市臨泉縣直水務和順幼兒園招聘保育員備考考試題庫附答案解析
- 2026春季江西贛州石城縣西外公立幼兒園教職工招聘參考考試試題附答案解析
- 湖南省益陽市2024-2025學年高一(上)期末考試物理試卷(含答案)
- 自愿退出豁免協(xié)議書范文范本
- 重慶市配套安裝工程施工質(zhì)量驗收標準
- 機器人實訓室規(guī)劃建設方案
- 綜合布線辦公樓布線方案
- 鞍鋼檢驗報告
- 河南省信陽市2023-2024學年高二上學期期末教學質(zhì)量檢測數(shù)學試題(含答案解析)
- 北師大版七年級上冊數(shù)學 期末復習講義
- 2023年初級經(jīng)濟師《初級人力資源專業(yè)知識與實務》歷年真題匯編(共270題)
- 氣穴現(xiàn)象和液壓沖擊
- 公民健康素養(yǎng)知識講座課件
評論
0/150
提交評論