2026屆上饒市重點(diǎn)中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆上饒市重點(diǎn)中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆上饒市重點(diǎn)中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆上饒市重點(diǎn)中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆上饒市重點(diǎn)中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆上饒市重點(diǎn)中學(xué)九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.2.拋物線y=3(x+2)2﹣(m2+1)(m為常數(shù))的頂點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,已知為的直徑,點(diǎn),在上,若,則()A. B. C. D.4.如圖,的半徑為2,弦,點(diǎn)P為優(yōu)弧AB上一動(dòng)點(diǎn),,交直線PB于點(diǎn)C,則的最大面積是

A. B.1 C.2 D.5.在Rt△ABC中,∠C=90°,若cosB=,則∠B的度數(shù)是()A.90° B.60° C.45° D.30°6.若二次函數(shù)y=x2+4x+n的圖象與x軸只有一個(gè)公共點(diǎn),則實(shí)數(shù)n的值是()A.1 B.3 C.4 D.67.下面是“育”“才”“水”“井"四個(gè)字的甲骨文,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8.計(jì)算:x(1﹣)÷的結(jié)果是()A. B.x+1 C. D.9.由四個(gè)相同的小正方體搭建了一個(gè)積木,它的三視圖如圖所示,則這個(gè)積木可能是()A. B. C. D.10.若函數(shù)其幾對對應(yīng)值如下表,則方程(,,為常數(shù))根的個(gè)數(shù)為()A.0 B.1 C.2 D.1或2二、填空題(每小題3分,共24分)11.一個(gè)口袋中裝有10個(gè)紅球和若干個(gè)黃球.在不允許將球倒出來數(shù)的前提下,為估計(jì)口袋中黃球的個(gè)數(shù),小明采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中紅球數(shù)與10的比值,再把球放回口袋中搖勻.不斷重復(fù)上述過程20次,得到紅球數(shù)與10的比值的平均數(shù)為0.1.根據(jù)上述數(shù)據(jù),估計(jì)口袋中大約有_______個(gè)黃球12.若線段AB=6cm,點(diǎn)C是線段AB的一個(gè)黃金分割點(diǎn)(AC>BC),則AC的長為cm(結(jié)果保留根號).13.在矩形中,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),連接,過點(diǎn)作與點(diǎn),交射線于點(diǎn),連接,則的最小值是_____________14.若關(guān)于x的一元二次方程x2﹣2kx+1-4k=0有兩個(gè)相等的實(shí)數(shù)根,則代數(shù)式(k-2)2+2k(1-k)的值為______.15.在平面直角坐標(biāo)系中,將拋物線向左平移2個(gè)單位后頂點(diǎn)坐標(biāo)為_______.16.若質(zhì)量抽檢時(shí)任抽一件西服成品為合格品的概率為0.9,則200件西服中大約有_____件合格品.17.如圖,四邊形,都是平行四邊形,點(diǎn)是內(nèi)的一點(diǎn),點(diǎn),,,分別是,上,,的一點(diǎn),,,若陰影部分的面積為5,則的面積為__________.18.小華在一次射擊訓(xùn)練中的6次成績(單位:環(huán))分別為:9,8,9,10,8,8,則他這6次成績的中位數(shù)比眾數(shù)多__________環(huán).三、解答題(共66分)19.(10分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度得到△AED,點(diǎn)B、C的對應(yīng)點(diǎn)分別是E、D.(1)如圖1,當(dāng)點(diǎn)E恰好在AC上時(shí),求∠CDE的度數(shù);(2)如圖2,若=60°時(shí),點(diǎn)F是邊AC中點(diǎn),求證:四邊形BFDE是平行四邊形.20.(6分)(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.21.(6分)已知:在△EFG中,∠EFG=90°,EF=FG,且點(diǎn)E,F(xiàn)分別在矩形ABCD的邊AB,AD上.(1)如圖1,當(dāng)點(diǎn)G在CD上時(shí),求證:△AEF≌△DFG;(2)如圖2,若F是AD的中點(diǎn),F(xiàn)G與CD相交于點(diǎn)N,連接EN,求證:EN=AE+DN;(3)如圖3,若AE=AD,EG,F(xiàn)G分別交CD于點(diǎn)M,N,求證:MG2=MN?MD.22.(8分)如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB).且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個(gè)根,線段AB的垂直平分線CD交AB于點(diǎn)C,交x軸于點(diǎn)D,點(diǎn)P是直線AB上一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線CD上一個(gè)動(dòng)點(diǎn).(1)求線段AB的長度:(2)過動(dòng)點(diǎn)P作PF⊥OA于F,PE⊥OB于E,點(diǎn)P在移動(dòng)過程中,線段EF的長度也在改變,請求出線段EF的最小值:(3)在坐標(biāo)平面內(nèi)是否存在一點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點(diǎn)M的坐標(biāo):若不存在,請說明理由.23.(8分)如圖,為固定一棵珍貴的古樹,在樹干處向地面引鋼管,與地面夾角為,向高的建筑物引鋼管,與水平面夾角為,建筑物離古樹的距離為,求鋼管的長.(結(jié)果保留整數(shù),參考數(shù)據(jù):)24.(8分)等腰中,,作的外接圓⊙O.(1)如圖1,點(diǎn)為上一點(diǎn)(不與A、B重合),連接AD、CD、AO,記與的交點(diǎn)為.①設(shè),若,請用含與的式子表示;②當(dāng)時(shí),若,求的長;(2)如圖2,點(diǎn)為上一點(diǎn)(不與B、C重合),當(dāng)BC=AB,AP=8時(shí),設(shè),求為何值時(shí),有最大值?并請直接寫出此時(shí)⊙O的半徑.25.(10分)全面二孩政策于2016年1月1日正式實(shí)施,黔南州某中學(xué)對八年級部分學(xué)生進(jìn)行了隨機(jī)問卷調(diào)查,其中一個(gè)問題“你爸媽如果給你添一個(gè)弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個(gè)選項(xiàng)(要求僅選擇一個(gè)選項(xiàng)):A.非常愿意B.愿意C.不愿意D.無所謂如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中信息解答以下問題:(1)試問本次問卷調(diào)查一共調(diào)查了多少名學(xué)生?并補(bǔ)全條形統(tǒng)計(jì)圖;(2)若該年級共有450名學(xué)生,請你估計(jì)全年級可能有多少名學(xué)生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個(gè)弟弟(或妹妹)?(3)在年級活動(dòng)課上,老師決定從本次調(diào)查回答“不愿意”的同學(xué)中隨機(jī)選取2名同學(xué)來談?wù)勊麄兊南敕?,而本次調(diào)查回答“不愿意”的這些同學(xué)中只有一名男同學(xué),請用畫樹狀圖或列表的方法求選取到兩名同學(xué)中剛好有這位男同學(xué)的概率.26.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】由題意首先根據(jù)相似三角形求得∠B的度數(shù),然后根據(jù)特殊角的三角函數(shù)值確定正確的選項(xiàng)即可.【詳解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故選:C.本題主要考查相似三角形的性質(zhì)以及三角函數(shù)相關(guān),解題的關(guān)鍵是熟練掌握相似三角形的對應(yīng)角相等.2、C【分析】根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo),根據(jù)偶次方的非負(fù)性判斷.【詳解】拋物線y=3(x+2)2﹣(m2+1)的的頂點(diǎn)坐標(biāo)為(﹣2,﹣(m2+1)),∵m2+1>0,∴﹣(m2+1)<0,∴拋物線的頂點(diǎn)在第三象限,故選:C.本題考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)坐標(biāo)的確定方法、偶次方的非負(fù)性是解題的關(guān)鍵.3、C【分析】連接AD,根據(jù)同弧所對的圓周角相等,求∠BAD的度數(shù),再根據(jù)直徑所對的圓周角是90°,利用內(nèi)角和求解.【詳解】解:連接AD,則∠BAD=∠BCD=28°,∵AB是直徑,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故選:C.本題考查圓周角定理,運(yùn)用圓周角定理是解決圓中角問題的重要途徑,直徑所對的圓周角是90°是圓中構(gòu)造90°角的重要手段.4、B【分析】連接OA、OB,如圖1,由可判斷為等邊三角形,則,根據(jù)圓周角定理得,由于,所以,因?yàn)?,則要使的最大面積,點(diǎn)C到AB的距離要最大;由,可根據(jù)圓周角定理判斷點(diǎn)C在上,如圖2,于是當(dāng)點(diǎn)C在半圓的中點(diǎn)時(shí),點(diǎn)C到AB的距離最大,此時(shí)為等腰直角三角形,從而得到的最大面積.【詳解】解:連接OA、OB,如圖1,,,為等邊三角形,,,,要使的最大面積,則點(diǎn)C到AB的距離最大,作的外接圓D,如圖2,連接CD,,點(diǎn)C在上,AB是的直徑,當(dāng)點(diǎn)C半圓的中點(diǎn)時(shí),點(diǎn)C到AB的距離最大,此時(shí)等腰直角三角形,,,ABCD,的最大面積為1.故選B.本題考查了圓的綜合題:熟練掌握圓周角定理和等腰直角三角形的判斷與性質(zhì);記住等腰直角三角形的面積公式.5、B【分析】根據(jù)銳角三角函數(shù)值,即可求出∠B.【詳解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故選:B.此題考查的是根據(jù)銳角三角函數(shù)值求角的度數(shù),掌握特殊角的銳角三角函數(shù)值是解決此題的關(guān)鍵.6、C【分析】二次函數(shù)y=x2+4x+n的圖象與軸只有一個(gè)公共點(diǎn),則,據(jù)此即可求得.【詳解】∵,,,根據(jù)題意得:,解得:n=4,故選:C.本題考查了拋物線與軸的交點(diǎn),二次函數(shù)(a,b,c是常數(shù),a≠0)的交點(diǎn)與一元二次方程根之間的關(guān)系.決定拋物線與軸的交點(diǎn)個(gè)數(shù).>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);時(shí),拋物線與軸有1個(gè)交點(diǎn);<0時(shí),拋物線與軸沒有交點(diǎn).7、C【解析】根據(jù)中心對稱圖形與軸對稱圖形的區(qū)別判斷即可,軸對稱圖形一定要沿某直線折疊后直線兩旁的部分互相重合,關(guān)鍵抓兩點(diǎn):一是沿某直線折疊,二是兩部分互相重合;中心對稱圖形是圖形繞某一點(diǎn)旋轉(zhuǎn)180°后與原來的圖形重合,關(guān)鍵也是抓兩點(diǎn):一是繞某一點(diǎn)旋轉(zhuǎn),二是與原圖形重合.【詳解】解:A.不是中心對稱圖形也不是軸對稱圖形,不符合題意;B.是軸對稱圖形不是中心對稱圖形,不符合題意;C.是中心對稱圖形不是軸對稱圖形,符合題意;D.是軸對稱圖形也是中心對稱圖形,不符合題意;故答案為:C.本題考查的知識(shí)點(diǎn)是軸對稱圖形與中心對稱圖形的判斷,熟記二者的區(qū)別是解題的關(guān)鍵.8、C【分析】直接利用分式的性質(zhì)化簡進(jìn)而得出答案.【詳解】解:原式==.故選:C.此題主要考查分式的運(yùn)算,解題的關(guān)鍵是熟知分式的運(yùn)算法則.9、A【解析】分析:從主視圖上可以看出上下層數(shù),從俯視圖上可以看出底層有多少小正方體,從左視圖上可以看出前后層數(shù),綜合三視圖可得到答案.解答:解:從主視圖上可以看出左面有兩層,右面有一層;從左視圖上看分前后兩層,后面一層上下兩層,前面只有一層,從俯視圖上看,底面有3個(gè)小正方體,因此共有4個(gè)小正方體組成,故選A.10、C【分析】先根據(jù)表格得出二次函數(shù)的圖象與x軸的交點(diǎn)個(gè)數(shù),再根據(jù)二次函數(shù)與一元二次方程的關(guān)系即可得出答案.【詳解】由表格可得,二次函數(shù)的圖象與x軸有2個(gè)交點(diǎn)則其對應(yīng)的一元二次方程根的個(gè)數(shù)為2故選:C.本題考查了二次函數(shù)的圖象、二次函數(shù)與一元二次方程的關(guān)系,掌握理解二次函數(shù)的圖象特點(diǎn)是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、2【詳解】解:∵小明通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn)其中摸到紅色球的頻率穩(wěn)定在0.1,設(shè)黃球有x個(gè),∴0.1(x+10)=10,解得x=2.答:口袋中黃色球的個(gè)數(shù)很可能是2個(gè).12、3(﹣1)【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項(xiàng),這樣的線段分割叫做黃金分割,他們的比值()叫做黃金比.【詳解】根據(jù)黃金分割點(diǎn)的概念和AC>BC,得:AC=AB=×6=3(﹣1).故答案為:3(﹣1).13、【分析】根據(jù)題意可點(diǎn)G在以AB為直徑的圓上,設(shè)圓心為H,當(dāng)HGC在一條直線上時(shí),CG的值最值,利用勾股定理求出CH的長,CG就能求出了.【詳解】解:點(diǎn)的運(yùn)動(dòng)軌跡為以為直徑的為圓心的圓弧。連結(jié)GH,CH,CG≥CH-GH,即CG=CH-GH時(shí),也就是當(dāng)三點(diǎn)共線時(shí),值最小值.最小值CG=CH-GH∵矩形ABCD,∴∠ABC=90°∴CH=故答案為:本題考查了矩形的性質(zhì)、勾股定理、三角形三邊的關(guān)系.CGH三點(diǎn)共線時(shí)CG最短是解決問題的關(guān)鍵.把動(dòng)點(diǎn)轉(zhuǎn)化成了定點(diǎn),問題就迎刃而解了..14、【分析】根據(jù)題意可得一元二次方程根的判別式為0,列出含k的等式,再將所求代數(shù)進(jìn)行變形后整體代入求值即可.【詳解】解:∵一元二次方程x2﹣2kx+1-4k=0有兩個(gè)相等的實(shí)數(shù)根,∴,整理得,,∴當(dāng)時(shí),故答案為:.本題考查一元二次方程根的判別式與根個(gè)數(shù)之間的關(guān)系,根據(jù)根的個(gè)數(shù)確定根的判別式的符號是解答此題的關(guān)鍵.15、【分析】根據(jù)變換前后的兩拋物線的頂點(diǎn)坐標(biāo)找變換規(guī)律.【詳解】解:y=(x+5)(x-3)=(x+1)2-16,頂點(diǎn)坐標(biāo)是(-1,-16).所以,拋物線y=(x+5)(x-3)向左平移2個(gè)單位長度后的頂點(diǎn)坐標(biāo)為(-1-2,-16),即(-3,-16),故答案為:(-3,-16)此題主要考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.16、1.【分析】用總數(shù)×抽檢時(shí)任抽一件西服成品為合格品的概率即可得出答案.【詳解】200×0.9=1,答:200件西服中大約有1件合格品故答案為:1.本題主要考查合格率問題,掌握合格產(chǎn)品數(shù)=總數(shù)×合格率是解題的關(guān)鍵.17、90【分析】根據(jù)平行四邊形的性質(zhì)得到AB∥CD,AB=CD,EF∥HG,EF=HG,根據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)即可得到結(jié)論.【詳解】∵四邊形都是平行四邊形,∴,,∴,∴,.又∵,∴,∴,,,.易知,∴此題考查平行四邊形的性質(zhì),平行線分線段成比例定理,三角形的面積,正確的識(shí)別圖形是解題的關(guān)鍵.18、0.5【分析】根據(jù)中位數(shù)的定義和眾數(shù)的定義,分別求出中位數(shù)和眾數(shù),然后作差即可.【詳解】解:將這6次的成績從小到大排列:8,8,8,9,9,10,故這6次的成績的中位數(shù)為:(8+9)÷2=環(huán)根據(jù)眾數(shù)的定義,這6次的成績的眾數(shù)為8環(huán)∴他這6次成績的中位數(shù)比眾數(shù)多-8=環(huán)故答案為:.此題考查的是求一組數(shù)的中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解決此題的關(guān)鍵.三、解答題(共66分)19、(1)15°;(2)證明見解析.【分析】(1)如圖1,利用旋轉(zhuǎn)的性質(zhì)得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根據(jù)等腰三角形的性質(zhì)求出∠ADC,從而計(jì)算出∠CDE的度數(shù);(2)如圖2,利用直角三角形斜邊上的中線性質(zhì)得到BF=AC,利用含30度的直角三角形三邊的關(guān)系得到BC=AC,則BF=BC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,從而得到DE=BF,△ACD和△BAE為等邊三角形,接著由△AFD≌△CBA得到DF=BA,然后根據(jù)平行四邊形的判定方法得到結(jié)論.【詳解】解:(1)如圖1,∵△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α得到△AED,點(diǎn)E恰好在AC上,∴∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=(180°?30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°?60°=15°;(2)證明:如圖2,∵點(diǎn)F是邊AC中點(diǎn),∴BF=AC,∵∠BAC=30°,∴BC=AC,∴BF=BC,∵△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE為等邊三角形,∴BE=AB,∵點(diǎn)F為△ACD的邊AC的中點(diǎn),∴DF⊥AC,易證得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四邊形BEDF是平行四邊形.本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了平行四邊形的判定.20、(1)AD=9;(2)AD=【分析】(1)連接BE,證明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)連接BE,證明△ACD∽△BCE,得到,求出BE的長,得到AD的長.【詳解】解:(1)如圖1,連接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如圖2,連接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考點(diǎn):相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);勾股定理.21、(1)見解析;(2)見解析;(3)見解析.【分析】(1)先用同角的余角相等,判斷出∠AEF=∠DFG,即可得出結(jié)論;(2)先判斷出△AHF≌△DNF,得出AH=DN,F(xiàn)H=FN,進(jìn)而判斷出EH=EN,即可得出結(jié)論;(3)先判斷出AF=PG,PF=AE,進(jìn)而判斷出PG=PD,得出∠MDG=45°,進(jìn)而得出∠FGE=∠GDM,判斷出△MGN∽△MDG,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)如圖2,,延長NF,EA相交于H,∴∠AFH=∠DFN,由(1)知,∠EAF=∠D=90°,∴∠HAF=∠D=90°,∵點(diǎn)F是AD的中點(diǎn),∴AF=DF,∴△AHF≌△DNF(ASA),∴AH=DN,F(xiàn)H=FN,∵∠EFN=90°,∴EH=EN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)如圖3,過點(diǎn)G作GP⊥AD交AD的延長線于P,∴∠P=90°,同(1)的方法得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,MG2=MN?MD.考核知識(shí)點(diǎn):相似三角形判定和性質(zhì).作輔助線,構(gòu)造全等三角形,利用相似三角形解決問題是關(guān)鍵.22、(1)1;(2);(3)存在,所求點(diǎn)M的坐標(biāo)為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B兩點(diǎn)的坐標(biāo),在Rt△AOB中利用勾股定理求出AB即可.(2)證明四邊形PEOF是矩形,推出EF=OP,根據(jù)垂線段最短解決問題即可.(3)分兩種情況進(jìn)行討論:①當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),先求出BM的解析式為y=x+8,設(shè)M(x,x+8),再根據(jù)BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐標(biāo);②當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),先求出AM的解析式為y=x﹣,設(shè)M(x,x﹣),再根據(jù)AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐標(biāo).【詳解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如圖,連接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四邊形PEOF是矩形,∴EF=OP,根據(jù)垂線段最短可知當(dāng)OP⊥AB時(shí),OP的值最小,此時(shí)OP==,∴EF的最小值為.(3)在坐標(biāo)平面內(nèi)存在點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長為AB長.∵AC=BC=AB=5,∴以點(diǎn)C、P、Q、M為頂點(diǎn)的正方形的邊長為5,且點(diǎn)P與點(diǎn)B或點(diǎn)A重合.分兩種情況:①當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),易求BM的解析式為y=x+8,設(shè)M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化簡整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),易求AM的解析式為y=x﹣,設(shè)M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化簡整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);綜上所述,所求點(diǎn)M的坐標(biāo)為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).本題是一次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有運(yùn)用待定系數(shù)法求一次函數(shù)的解析式,一元二次方程的解法,正方形的性質(zhì),綜合性較強(qiáng),難度適中.運(yùn)用數(shù)形結(jié)合、分類討論及方程思想是解題的關(guān)鍵.23、鋼管AB的長約為6m【分析】過點(diǎn)C作CF⊥AD于點(diǎn)F,于是得到CF=DE=6,AF=CFtan30°.在Rt△ABD中,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】過點(diǎn)C作CF⊥AD于點(diǎn)F,則CF=DE=6,AF=CFtan30°=62,∴AD=AF+DF=21.5,在Rt△ABD中,AB(21.5)46(m).答:鋼管AB的長約為6m.本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)的知識(shí)求解相關(guān)線段的長度.24、(1)①;②;(2)PB=5時(shí),S有最大值,此時(shí)⊙O的半徑是.【分析】(1)①連接BO、CO,利用SSS可證明△ABO≌△ACO,可得∠BAO=∠CAO=y,利用等腰三角形的性質(zhì)及三角形內(nèi)角和定理可用y表示出∠ABC,由圓周角定理可得∠DCB=∠DAB=x,根據(jù)即可得答案;②過點(diǎn)作于點(diǎn),根據(jù)垂徑定理可得AF的長,利用勾股定理可求出OF的長,由(1)可得,由AB⊥CD可得n=90°,即可證明y=x,根據(jù)AB⊥CD,OF⊥AC可證明△AED∽△AFO,設(shè)DE=a,根據(jù)相似三角形的性質(zhì)可,由∠D=∠B,∠AED=∠CEB=90°可證明△AED∽△CEB,設(shè),根據(jù)相似三角形的性質(zhì)可得,根據(jù)線段的和差關(guān)系和勾股定理列方程組可求出a、b的值,根據(jù)△AED∽△AFO即可求出AD的值;(2)延長到,使得,過點(diǎn)B作BD⊥AP于D,BE⊥CP,交CP延長線于E,連接OA,作OF⊥AB于F,根據(jù)BC=AB可得三角形ABC是等邊三角形,根據(jù)圓周角定理可得∠APM=60°,即可證明△APM是等邊三角形,利用角的和差關(guān)系可得∠BAP=∠CAM,利用SAS可證明△BAP≌△CPM,可得BP=CM,即可得出PB+PC=AP,設(shè),則,利用∠APB和∠BPE的正弦可用x表示出BD、BE的長,根據(jù)可得S與x的關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)即可求出S取最大值時(shí)x的值,利用∠BPA的余弦及勾股定理可求出AB的長,根據(jù)等邊三角形的性質(zhì)及垂徑定理求出OA的長即可得答案.【詳解】(1)①連接BO,CO,∵,且為公共邊,∴,∴,∴,∴∵,∵,∴∴.②過點(diǎn)作于點(diǎn),∴,∴,∵,∴,∴,∵,∴,∴△AED∽△AFO,∴=,即,設(shè),則∵,∴△AED∽△CEB,∴,即設(shè),則,∴解得:或,∵a>0,b>0,∴,即DE=,∵△AED∽△AFO,∴,∴AD==3=.(2)延長到,使得,過點(diǎn)B作BD⊥AP于D,BE⊥CP,交CP延長線于E,連接OA,作OF⊥AB于F,∵BC=AB,AB=AC,∴是等邊三角形,∴,∴,∴是等邊三角形,∴,∵∠BAP+∠PAC=∠CAM+∠PAC=60°,∴在△BAP和△CAM中,,∴,∴,∴設(shè),則,∵∠APB=∠ACB=60°,∠APM=60°,∴∠BPE=60°,∴BE=PB·sin60°=,PD=PB·sin60°=,∵,∴S=PC·BE+×AP·BD=,∴當(dāng)時(shí),即PB=5時(shí),S有最大值,∴BD==,PD=PB·cos60°=,∴AD=AP-PD=,∴AB==7,∵△ABC是等邊三角形,O為△ABC的外接圓圓心,∴∠OAF=30°,AF=AB=,∴OA==.∴此時(shí)的半徑是.本題考查圓周角定理、相似三角形的判定與性質(zhì)、垂徑定理、等邊三角形的判定與性質(zhì)、求二次函數(shù)的最值及解直角三角形,綜合性比較強(qiáng),熟練掌握相關(guān)的性質(zhì)及定理是解題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論