人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】專項(xiàng)測試試卷(含答案解析)_第1頁
人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】專項(xiàng)測試試卷(含答案解析)_第2頁
人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】專項(xiàng)測試試卷(含答案解析)_第3頁
人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】專項(xiàng)測試試卷(含答案解析)_第4頁
人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】專項(xiàng)測試試卷(含答案解析)_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】專項(xiàng)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,中,,,若將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接,則在點(diǎn)運(yùn)動(dòng)過程中,線段的最小值為(

)A.1 B. C. D.22、如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點(diǎn)B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2019次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,…,則B2019的坐標(biāo)為(

)A.(1010,0) B.(1310.5,) C.(1345,) D.(1346,0)3、如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點(diǎn)的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)得到△A'B'C',則旋轉(zhuǎn)中心的坐標(biāo)是(

)A.(1,1) B.(1,﹣1) C.(0,0) D.(1,﹣2)4、如圖,在鈍角中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,點(diǎn),的對(duì)應(yīng)點(diǎn)分別為,,連接.則下列結(jié)論一定正確的是(

)A. B. C. D.平分5、如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),且點(diǎn)在同一條直線上;則的長為(

)A. B. C. D.6、下列圖形中,是中心對(duì)稱圖形的是()A. B.C. D.7、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8、如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)70°得到△ADE,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為D、E,當(dāng)點(diǎn)B、C、D、P在同一條直線上時(shí),則∠PDE的度數(shù)為(

)A.55° B.70° C.80° D.110°9、下列圖形中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是(

)A. B.C. D.10、如圖,平面直角坐標(biāo)系中,點(diǎn)在第一象限,點(diǎn)在軸的正半軸上,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是(

)A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、點(diǎn)P(2,﹣3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是_________.2、如圖,在Rt△ABC中,AC=BC=1,D是斜邊AB上一點(diǎn)(與點(diǎn)A,B不重合),將△BCD繞著點(diǎn)C旋轉(zhuǎn)90°到△ACE,連結(jié)DE交AC于點(diǎn)F,若△AFD是等腰三角形,則AF的長為_____.3、將圖1剪成若干小塊,再圖2中進(jìn)行拼接平移后能夠得到①、②、③中的__________.4、如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(﹣1,0),點(diǎn)A的坐標(biāo)為(﹣3,3),將點(diǎn)A繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為___.5、在中,頂點(diǎn),,.將與正方形組成的圖形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn),則第2022次旋轉(zhuǎn)結(jié)束時(shí),點(diǎn)的坐標(biāo)是________.6、若點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則______;7、如圖,在△ABC中,∠BAC=90°,AB=AC=10cm,點(diǎn)D為△ABC內(nèi)一點(diǎn),∠BAD=15°,AD=6cm,連接BD,將△ABD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),使AB與AC重合,點(diǎn)D的對(duì)應(yīng)點(diǎn)E,連接DE,DE交AC于點(diǎn)F,則CF的長為________cm.8、在平面直角坐標(biāo)系中,點(diǎn)(﹣3,2)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是____________.9、如圖所示,直線,垂足為點(diǎn)是直線上的兩點(diǎn),且.直線繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為.(1)當(dāng)時(shí),在直線上找點(diǎn),使得是以為頂角的等腰三角形,此時(shí)_____.(2)當(dāng)在什么范圍內(nèi)變化時(shí),直線上存在點(diǎn),使得是以為頂角的等腰三角形,請(qǐng)用不等式表示的取值范圍:_________.10、如圖,把△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,連接BE,CD,M是BE的中點(diǎn),若AM=,則CD的長為_______.三、解答題(6小題,每小題5分,共計(jì)30分)1、如圖,點(diǎn)A(a,0),B(0,b),且a、b滿足(a﹣2)2+|4b﹣8|=0.(1)如圖1,求a,b的值;(2)如圖2,點(diǎn)C在線段AB上(不與A、B重合)移動(dòng),AB⊥BD,且∠COD=45°,猜想線段AC、BD、CD之間的數(shù)量關(guān)系并證明你的結(jié)論;(3)如圖3,若P為x軸正半軸上異于原點(diǎn)O和點(diǎn)A的一個(gè)動(dòng)點(diǎn),連接PB,將線段PB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°至PE,直線AE交y軸于點(diǎn)Q,當(dāng)P點(diǎn)在x軸上移動(dòng)時(shí),線段BE和線段BQ中哪一條線段長為定值,并求出該定值.2、如圖,在平面直角坐標(biāo)系中,拋物線M的表達(dá)式為y=﹣x2+2x,與x軸交于O、A兩點(diǎn),頂點(diǎn)為點(diǎn)B.(1)求證:△OAB為等腰直角三角形:(2)已知點(diǎn)P在y軸上,且OP=1,點(diǎn)C在第一象限,△ABC為等腰直角三角形,將拋物線M進(jìn)行平移,使其對(duì)稱軸經(jīng)過點(diǎn)C,請(qǐng)問平移后的拋物線能否經(jīng)過點(diǎn)P?如果能,求出平移方式;如果不能,說明理由.3、在Rt△ABC中,∠BAC=90°,AB=AC,動(dòng)點(diǎn)D在直線BC上(不與點(diǎn)B,C重合),連接AD,把AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接DE,F(xiàn),G分別是DE,CD的中點(diǎn),連接FG.【特例感知】(1)如圖1,當(dāng)點(diǎn)D是BC的中點(diǎn)時(shí),F(xiàn)G與BD的數(shù)量關(guān)系是,F(xiàn)G與直線BC的位置關(guān)系是;【猜想論證】(2)當(dāng)點(diǎn)D在線段BC上且不是BC的中點(diǎn)時(shí),(1)中的結(jié)論是否仍然成立?①請(qǐng)?jiān)趫D2中補(bǔ)全圖形;②若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.【拓展應(yīng)用】(3)若AB=AC=,其他條件不變,連接BF、CF.當(dāng)△ACF是等邊三角形時(shí),請(qǐng)直接寫出△BDF的面積.4、如圖,點(diǎn)E為正方形ABCD外一點(diǎn),∠AEB=90°,將Rt△ABE繞A點(diǎn)逆時(shí)針方向旋轉(zhuǎn)90°得到△ADF,DF的延長線交BE于H點(diǎn).(1)試判定四邊形AFHE的形狀,并說明理由;(2)已知BH=7,DH=17,求BC的長.5、在數(shù)學(xué)活動(dòng)課上,王老師要求學(xué)生將圖1所示的3×3正方形方格紙,剪掉其中兩個(gè)方格,使之成為軸對(duì)稱圖形.規(guī)定:凡通過旋轉(zhuǎn)能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設(shè)計(jì)方案(陰影部分為要剪掉部分)請(qǐng)?jiān)趫D中畫出4種不同的設(shè)計(jì)方案,將每種方案中要剪掉的兩個(gè)方格涂黑(每個(gè)3×3的正方形方格畫一種,例圖除外)6、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點(diǎn),將點(diǎn)O沿BC翻折得到點(diǎn),將ABC繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點(diǎn)M為BE的中點(diǎn),連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請(qǐng)直接寫出的值為.-參考答案-一、單選題1、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS證明△AQD≌△AOE,推出QD=OE,當(dāng)QD⊥BC時(shí),QD的值最小,即線段OE有最小值,利用勾股定理即可求解.【詳解】如圖,在AB上截取AQ=AO=1,連接DQ,∵將AD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到AE,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△AQD和△AOE中,,∴△AQD≌△AOE(SAS),∴QD=OE,∵D點(diǎn)在線段BC上運(yùn)動(dòng),∴當(dāng)QD⊥BC時(shí),QD的值最小,即線段OE2有最小值,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得QD=QB=,∴線段OE有最小值為,故選:B.【考點(diǎn)】本題考查了勾股定理,等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.2、D【解析】【分析】連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4.由于2019=336×6+3,因此點(diǎn)向右平移(即)即可到達(dá)點(diǎn),根據(jù)點(diǎn)的坐標(biāo)就可求出點(diǎn)的坐標(biāo).【詳解】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4.∵2019=336×6+3,∴點(diǎn)B3向右平移1344(即336×4)到點(diǎn)B2019.∵B3的坐標(biāo)為(2,0),∴B2019的坐標(biāo)為(1346,0),故選:D【考點(diǎn)】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí),考查了操作、探究、發(fā)現(xiàn)規(guī)律的能力.發(fā)現(xiàn)“每翻轉(zhuǎn)6次,圖形向右平移4”是解決本題的關(guān)鍵.3、A【解析】【分析】對(duì)應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心,然后直接寫成坐標(biāo)即可.【詳解】解:如圖點(diǎn)O′即為旋轉(zhuǎn)中心,坐標(biāo)為O′(1,1).故選:A【考點(diǎn)】本題主要考查了旋轉(zhuǎn)中心的確定方法,熟練掌握對(duì)應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)旋轉(zhuǎn)可知△CAB≌△EAD,∠CAE=70°,結(jié)合∠BAC=35°,可知∠BAE=35°,則可證得△CAB≌△EAB,即可作答.【詳解】根據(jù)旋轉(zhuǎn)的性質(zhì)可知△CAB≌△EAD,∠CAE=70°,∴∠BAE=∠CAE-∠CAB=70°-35°=35°,AC=AE,AB=AD,BC=DE,∠ABC=∠ADE,故A、B錯(cuò)誤,∴∠CAB=∠EAB,∵AC=AE,AB=AB,∴△CAB≌△EAB,∴△EAB≌△EAD∴∠BEA=∠DEA,∴AE平分∠BED,故D正確,∴AD+BE=AB+BE>AE=AC,故C錯(cuò)誤,故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)和全等三角形的判定與性質(zhì),求出∠BAE=35°是解答本題的關(guān)鍵.5、A【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉(zhuǎn)的性質(zhì)可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=3.故選:A.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì)、勾股定理,在解決旋轉(zhuǎn)問題時(shí),要借助旋轉(zhuǎn)的性質(zhì)找到旋轉(zhuǎn)角和旋轉(zhuǎn)后對(duì)應(yīng)的量.6、C【解析】【分析】根據(jù)中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對(duì)稱圖形,故本選項(xiàng)不合題意;B、不是中心對(duì)稱圖形,故本選項(xiàng)不合題意;C、是中心對(duì)稱圖形,故本選項(xiàng)符合題意;D、不是中心對(duì)稱圖形,故本選項(xiàng)不合題意.故選:C.【考點(diǎn)】本題考查了中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.7、D【解析】【分析】先依據(jù),即可得出點(diǎn)P所在的象限,再根據(jù)兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反,即可得出結(jié)論.【詳解】解:∵,∴點(diǎn)在第二象限,∴點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)在第四象限.故選D.【考點(diǎn)】本題主要考查了關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)的坐標(biāo)特征,明確關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn)的橫、縱坐標(biāo)均互為相反數(shù)是解答的關(guān)鍵.8、B【解析】【分析】首先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,AB=AD,據(jù)此即可求得,據(jù)此即可求得.【詳解】解:將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)70°得到△ADE,,,AB=AD,,,又點(diǎn)B、C、D、P在同一條直線上,,故選:B.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等邊對(duì)等角的應(yīng)用,三角形內(nèi)角和定理,熟練掌握和運(yùn)用旋轉(zhuǎn)的性質(zhì)是解決本題的關(guān)鍵.9、B【解析】【分析】根據(jù)中心對(duì)稱圖形和軸對(duì)稱圖形的定義判斷即可.【詳解】解:∵A中的圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴A中的圖象不是中心對(duì)稱圖形,∴選項(xiàng)A不正確;∵B中的圖形旋轉(zhuǎn)180°后能與原圖形重合,∴B中的圖形是中心對(duì)稱圖形,但不是軸對(duì)稱圖形,∴選項(xiàng)B正確;∵C中的圖形旋轉(zhuǎn)180°后能與原圖形重合,∴C中的圖形是中心對(duì)稱圖形,也是軸對(duì)稱圖形,∴選項(xiàng)C不正確;∵D中的圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴D中的圖形不是中心對(duì)稱圖形,∴選項(xiàng)D不正確;故選:B.【考點(diǎn)】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的定義,熟練掌握軸對(duì)稱圖形和中心對(duì)稱圖形的定義是解題的關(guān)鍵.10、B【解析】【分析】如圖,作軸于.解直角三角形求出,即可.【詳解】解:如圖,作軸于.由題意:,,,,,,,故選:B.【考點(diǎn)】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題.二、填空題1、(-2,3)【解析】【分析】根據(jù)平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是(-x,-y),即關(guān)于原點(diǎn)的對(duì)稱點(diǎn),橫縱坐標(biāo)都變成相反數(shù).【詳解】解:已知點(diǎn)P(2,-3),則點(diǎn)P關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-2,3),故答案為:(-2,3).【考點(diǎn)】本題主要考查了關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的性質(zhì),正確把握橫縱坐標(biāo)的關(guān)系是解題關(guān)鍵.2、或【解析】【分析】Rt△ABC中,AC=BC=1,所以∠CAB=∠B=45°,∠ECD=90°,∠CDE=∠CED=45°,分兩種情況討論①AF=FD時(shí),AF=AC=×1=;②AF=AD時(shí),AF=.【詳解】解:∵Rt△ABC中,AC=BC=1,∴∠CAB=∠B=45°,∵△BCD繞著點(diǎn)C旋轉(zhuǎn)90°到△ACE,∴∠ECD=90°,∠CDE=∠CED=45°,①AF=FD時(shí),∠FDA=∠FAD=45°,∴∠AFD=90°,∠CDA=45°+45°=90°=∠ECD=∠DAE,∵EC=CD,∴四邊形ADCE是正方形,∴AD=DC,∴AF=AC=×1=;②AF=AD時(shí),∠ADF=∠AFD=67.5°,∴∠CDB=180°-∠ADE-∠EDC=180°-67.5°-45°=67.5°,∴∠DCB=180°-67.5°-45°=67.5°,∴∠DCB=∠CDB,∴BD=CB=1,∴AD=AB-BD=,∴AF=AD=,故答案為:或.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正確利用旋轉(zhuǎn)原理和直角三角形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.3、①②##②①【解析】【詳解】解:根據(jù)圖形1可得剪成若干小塊,再圖2中進(jìn)行拼接平移后能夠得到①、②,不能拼成③,故答案為:①②.4、(2,2)【解析】【分析】過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F.利用全等三角形的性質(zhì)解決問題即可.【詳解】解:如圖,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F.∵∠AEC=∠ACB=∠CFB=90°,∴∠ACE+∠BCF=90°,∠BCF+∠B=90°,∴∠ACE=∠B,在△AEC和△CFB中,,∴△AEC≌△CFB(AAS),∴AE=CF,EC=BF,∵A(﹣3,3),C(﹣1,0),∴AE=CF=3,OC=1,EC=BF=2,∴OF=CF﹣OC=2,∴B(2,2),故答案為:(2,2).【考點(diǎn)】本題考查坐標(biāo)與圖形變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題.5、【解析】【分析】先求出AB,再利用正方形的性質(zhì)確定C點(diǎn)坐標(biāo),由于2020=4×505,所以第2020次旋轉(zhuǎn)結(jié)束時(shí),正方形ABCD回到初始位置,再旋轉(zhuǎn)2次,得出C的坐標(biāo)便是答案值.【詳解】∵A(4,3),B(4,-3),∴AB=3-(-3)=6,∵四邊形ABCD為正方形,∴BC=AB=6,∴C(10,-3),∵△OAB與正方形ABCD組成的圖形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,∴每4次一個(gè)循環(huán),∵2022=4×505+2,∴第2020次旋轉(zhuǎn)結(jié)束時(shí),正方形ABCD回到初始位置,從初始位置再旋轉(zhuǎn)兩次,就到第2022次旋轉(zhuǎn)到的位置,∴點(diǎn)C的坐標(biāo)為(-10,3).故答案為:(-10,3).【考點(diǎn)】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),正方形的性質(zhì),解答本題的關(guān)鍵是找出C點(diǎn)坐標(biāo)變化的規(guī)律.6、-1【解析】【分析】平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是(-x,-y),可據(jù)此求出m、n的值.【詳解】∵點(diǎn)與點(diǎn)關(guān)于坐標(biāo)系原點(diǎn)對(duì)稱,∴m-2n=-4,3m=-6解得:m=-2,n=1.故m+n=-2+1=-1.故答案為-1.【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)的關(guān)系,是需要識(shí)記的基本問題.7、【解析】【分析】過點(diǎn)A作AH⊥DE,垂足為H,由旋轉(zhuǎn)的性質(zhì)可得AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,再根據(jù)等腰直角三角形的性質(zhì)可得∠HAE=45°,AH=3,進(jìn)而得∠HAF=30°,繼而求出AF長即可求得答案.【詳解】過點(diǎn)A作AH⊥DE,垂足為H,∵∠BAC=90°,AB=AC,將△ABD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),使AB與AC重合,點(diǎn)D的對(duì)應(yīng)點(diǎn)E,∴AE=AD=6,∠CAE=∠BAD=15°,∠DAE=∠BAC=90°,∴DE=,∠HAE=∠DAE=45°,∴AH=DE=3,∠HAF=∠HAE-∠CAE=30°,∴AF=,∴CF=AC-AF=,故答案為.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,解直角三角形等知識(shí),正確添加輔助線構(gòu)建直角三角形、靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.8、(3,﹣2)【解析】【分析】根據(jù)平面直角坐標(biāo)系內(nèi)兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱橫縱坐標(biāo)互為相反數(shù),即可得出答案.【詳解】解:根據(jù)平面直角坐標(biāo)系內(nèi)兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱橫縱坐標(biāo)互為相反數(shù),∴點(diǎn)(﹣3,2)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(3,﹣2),故答案為(3,﹣2).【考點(diǎn)】本題主要考查了平面直角坐標(biāo)系內(nèi)兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱橫縱坐標(biāo)互為相反數(shù),難度較小.9、(1)或;(2)45°≤≤135°且≠90°【解析】【分析】(1)先求出旋轉(zhuǎn)后與的夾角,然后根據(jù)題意以點(diǎn)B為圓心,的長為半徑作弧,與直線的交點(diǎn)P即為所求,利用銳角三角函數(shù)即可求出BC和OC,再利用勾股定理求出PC,從而求出結(jié)論;(2)當(dāng)由圖可知:當(dāng)BC≤AB且A、B、P不共線時(shí),直線上存在點(diǎn),使得是以為頂角的等腰三角形,求出當(dāng)BC=AB=時(shí),的度數(shù),然后根據(jù)題意即可求出結(jié)論.【詳解】解:(1)當(dāng)時(shí),此時(shí)與的夾角為90°-60°=30°以點(diǎn)B為圓心,的長為半徑作弧,與直線的交點(diǎn)P即為所求,即BP=AB=,過點(diǎn)B作BC⊥,BC=OB·sin30°=1<BP,OC=OB·cos30°=∴在直線上存在兩個(gè)P點(diǎn)滿足題意根據(jù)勾股定理PC=∴OP=OC-PC或OP=OC+PC∴OP=或故答案為:或;(2)當(dāng)由圖可知:當(dāng)BC≤AB且A、B、P不共線時(shí),直線上存在點(diǎn),使得是以為頂角的等腰三角形,當(dāng)BC=AB=時(shí),sin∠BOC=∴∠BOC=45°當(dāng)點(diǎn)B在直線右側(cè)時(shí),90°-∠BOC=45°;當(dāng)點(diǎn)B在直線左側(cè)時(shí),90°+∠BOC=135°;∵BC≤AB且A、B、P不共線時(shí)∴45°≤≤135°且≠90°故答案為:45°≤≤135°且≠90°.【考點(diǎn)】此題考查的是銳角三角函數(shù)、作等腰三角形和勾股定理,掌握銳角三角函數(shù)、分類討論的數(shù)學(xué)思想、勾股定理和利用極限思想求取值范圍是解決此題的關(guān)鍵.10、【解析】【分析】延長AM到F,使AM=MF,連接BF,證△AEM≌△FBM,得AE=FB,∠AEM=∠FBM,△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,得AB=AD,∠CAE=∠BAD=90°,再證AC=BF,∠CAD=∠ABF,得△BFA≌△ACD,即可得答案.【詳解】解:如上圖:延長AM到F,使AM=MF,∵M(jìn)是BE的中點(diǎn),∴BM=EM,∵∠AME=∠FMB,∴△AEM≌△FBM,∴AE=FB,∠AEM=∠FBM,∵△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,∴AB=AD,AC=AE,∠CAE=∠BAD=90°,∴AC=BF,∠CAD=90°-∠EAD,∵∠ABF=∠ABM+∠FBM=∠ABM+∠AEM=180°-∠BAE=180°-(∠BAD+∠EAD)=180°-90°-∠EAD=90°-∠EAD,∴∠CAD=∠ABF,在△BFA和△ACD中,∴△BFA≌△ACD,∴FA=CD,∵AM=,∴CD=FA=2AM=2,故答案為:2.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定與性質(zhì),解題的關(guān)鍵是延長AM到F,使AM=MF,證△BFA≌△ACD.三、解答題1、(1)2(2)CD=BD+AC.理由見解析(3)BQ是定值,【解析】【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a-2=0,4b-8=0,求得a=2,b=2,得到OA=2,OB=2,于是得到結(jié)果;(2)證明:將△AOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△OBF根據(jù)已知條件得到∠DBF=180°,由∠DOC=45°,∠AOB=90°,同時(shí)代的∠BOD+∠AOC=45°,求出∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,推出△ODF≌△ODC,根據(jù)全等三角形的性質(zhì)得到DC=DF=DB+BF=DB+DC;(3)BQ是定值,作EF⊥OA于F,在FE上截取PF=FD,由∠BAO=∠PDF=45°,得到∠PAB=∠PDE=135°,根據(jù)余角的性質(zhì)得到∠BPA=∠PED,推出△PBA≌EPD,根據(jù)全等三角形的性質(zhì)得到AP=ED,于是得到FD+ED=PF+AP.即:FE=FA,根據(jù)等腰直角三角形的性質(zhì)得到結(jié)論.(1)解:∵(a﹣2)2+|4b﹣8|=0,∴a-2=0,4b-8=0,∴a=2,b=2,∴A(2,0)、B(0,2),∴OA=2,OB=2,∴△AOB的面積=;(2)證明:如圖2,將△AOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△OBF,而∵∠OAC=∠OBF=∠OBA=45°,∠DBA=90°,∴∠DBF=180°,∵∠DOC=45°,∠AOB=90°,∴∠BOD+∠AOC=45°,∴∠FOD=∠BOF+∠BOD=∠BOD+∠AOC=45°,在△ODF與△ODC中,,∴:△ODF≌△ODC,∴DC=DF,DF=BD+BF,∴CD=BD+AC.(3)BQ是定值,BE明顯不是定值,理由如下:作EF⊥OA于F,在FE上截取FD=PF,∵∠BAO=∠PDF=45°,∴∠PAB=∠PDE=135°,∴∠BPA+∠EPF=90°,∠EPF+∠PED=90°,∴∠BPA=∠PED,在△PBA與△EPD中,,∴△PBA≌EPD(AAS),∴AP=ED,∴FD+ED=PF+AP,即:FE=FA,∴∠FEA=∠FAE=45°,∴∠QAO=∠EAF=∠OQA=45°,∴OA=OQ=2,∴BQ=4.為定值.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),坐標(biāo)與圖形的性質(zhì),等腰直角三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),三角形面積的計(jì)算,非負(fù)數(shù)的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.2、(1)見詳解(2)將拋物線M向右平移個(gè)單位,再向上平移個(gè)點(diǎn),得過點(diǎn)C1和點(diǎn)P的拋物線;拋物線M向右平移個(gè)單位,再向上平移得出過點(diǎn)C2和點(diǎn)P的拋物線;拋物線M向右平移個(gè)單位。再向上平移個(gè)單位,得點(diǎn)過點(diǎn)C3與P的拋物線【解析】【分析】(1)將拋物線M配方為頂點(diǎn)式得出拋物線的對(duì)稱軸為x=2,拋物線的頂點(diǎn)B(2,2),然后求出點(diǎn)A(4,0),根據(jù)對(duì)稱軸求出點(diǎn)E(2,O),BE⊥OA,證明△OEB為等腰直角三角形,再證△AEB為等腰直角三角形即可;(2)根據(jù)△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點(diǎn)B為直角頂點(diǎn),將AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得出點(diǎn)C1(4,4)將拋物線M向右平移2個(gè)單位,再向上平移2個(gè)點(diǎn),得出以C1為頂點(diǎn)的拋物線為,以AB為直角邊,以點(diǎn)A直角頂點(diǎn),將AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得AC2,求出點(diǎn)C2(6,2),拋物線M向右平移4個(gè)單位得出過頂點(diǎn)C2的拋物線;以AB為斜邊,點(diǎn)C3為直角頂點(diǎn),點(diǎn)C3在AC1的中點(diǎn),C3(4,2)即可.(1)解:拋物線M的表達(dá)式為,∴拋物線的對(duì)稱軸為x=2,拋物線的頂點(diǎn)B(2,2),拋物線與x軸的交點(diǎn),解得:,∴點(diǎn)A(4,0),∵拋物線對(duì)稱軸為x=2,∴點(diǎn)E(2,O),BE⊥OA,∵OE=BE=2,∠OEB=90°,∴△OEB為等腰直角三角形,∴∠BOE=∠OBE=45°,∵AE=OA-OE=4-2=2,∴BE=AE,∠AEB=90°,∴△AEB為等腰直角三角形,∴∠EBA=∠EAB=45°,∴∠BOE=∠OBE=∠EBA=∠EAB=45°,∴OB=AB,∠OBA=∠OBE+∠ABE=45°+45°=90°,∴△OAB為等腰直角三角形(2)解:∵△ABC為等腰直角三角形,分以下三種情況,以AB為直角邊,點(diǎn)B為直角頂點(diǎn),將AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,∴∠BAC1=45°,∴∠CAO=∠OAB+∠C1AB=45°+45°=90°,∴CA⊥x軸,∵∠OBA+∠ABC1=90°+90°=180°,∴點(diǎn)O、B、C1三點(diǎn)共線,∵∠C1OA=45°,∴△OAC1為等腰直角三角形,∴C1A=OA=4,∴點(diǎn)C1(4,4)∵OP=1,∴點(diǎn)P(0,1)設(shè)過點(diǎn)P與C1形狀與M斜體的拋物線解析式為,代入坐標(biāo)得解得∴,將拋物線M向右平移個(gè)單位,再向上平移個(gè)點(diǎn),得過點(diǎn)C1和點(diǎn)P的拋物線以AB為直角邊,以點(diǎn)A直角頂點(diǎn),將AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得AC2,∵∠C2BA=45°=∠BAO,∴BC2∥OA,∠OBA=∠C2AB,∴AC2∥OB,∴四邊形OBC2A,∴BC2=OA=4,∴點(diǎn)C2橫坐標(biāo)為OE+BC2=2+4=6,∴點(diǎn)C2(6,2),∴點(diǎn)P(0,1)設(shè)過點(diǎn)P與C2形狀與M斜體的拋物線解析式為,代入坐標(biāo)得解得∴∴,∴拋物線M向右平移個(gè)單位,再向上平移得出過點(diǎn)C2和點(diǎn)P的拋物線;以AB為斜邊,點(diǎn)C3為直角頂點(diǎn),點(diǎn)C3在AC1的中點(diǎn),C3(4,2)∵點(diǎn)P(0,1)設(shè)過點(diǎn)P與C3形狀與M斜體的拋物線解析式為,代入坐標(biāo)得解得∴∴,∴拋物線M向右平移個(gè)單位。再向上平移個(gè)單位,得點(diǎn)過點(diǎn)C3與P的拋物線【考點(diǎn)】本題考查圖形與坐標(biāo),待定系數(shù)法求拋物線解析式,二次函數(shù)的性質(zhì),等腰直角三角形,圖形旋轉(zhuǎn),拋物線平移,掌握?qǐng)D形與坐標(biāo),待定系數(shù)法求拋物線解析式,二次函數(shù)的性質(zhì),等腰直角三角形,圖形旋轉(zhuǎn),拋物線平移是解題關(guān)鍵.3、(1)FG=BD,F(xiàn)G⊥BC;(2)①補(bǔ)全圖形見解析;②結(jié)論仍然成立,理由見解析;(3)△BDF的面積為或.【解析】【分析】(1)根據(jù)等腰直角三角形的性質(zhì)以及中位線定理可得結(jié)果;(2)①根據(jù)題意畫出圖形即可;②根據(jù)旋轉(zhuǎn)的性質(zhì)證明△ABD≌△ACE,結(jié)合中位線定理證明結(jié)論;(3)分兩種情況進(jìn)行討論:當(dāng)點(diǎn)D在點(diǎn)B的左側(cè)時(shí);當(dāng)點(diǎn)D在點(diǎn)C的右側(cè)時(shí),分別畫出圖形結(jié)合等邊三角形的性質(zhì)解答.【詳解】(1)∵∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn),∴AD⊥BC,AD=BD=CD,∠ABC=∠ACB=45°,∵F,G分別是DE,CD的中點(diǎn),∴FGAD,F(xiàn)G∥AD,∴FGBD,F(xiàn)G⊥BC,故答案為:FGBD,F(xiàn)G⊥BC;(2)①補(bǔ)全圖形如圖所示;②結(jié)論仍然成立,理由如下:如圖2,連接CE,∵把AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,∴∠BAC=∠DAE=90°,AD=AE,∴∠BAD=∠CAE,又∵AB=AC,∴△ABD≌△ACE(SAS),∴CE=BD,∠ACE=∠B=∠ACB=45°,∴∠DCE=90°,∵F,G分別是DE,CD的中點(diǎn),∴FGCEBD,F(xiàn)G∥CE,∴FG⊥BC;(3)當(dāng)點(diǎn)D在點(diǎn)B的左側(cè)時(shí),如圖3﹣1中,作AM⊥BC于M,連接FG,∵∠BAC=90°,AB=AC,AM⊥BC,∴BC=2,BM=CM=AMBC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,點(diǎn)F是DE中點(diǎn),∴∠EAF=∠CAM=45°,AF=FD=EF,∵△AFC是等邊三角形,∴AF=AC=FC,∠FAC=∠AFC=∠ACF=60°,∴∠CAE=15°=∠BAD,∴∠ADM=∠ABC﹣∠BAD=30°,∴DMAM,∴BD=DM﹣BM,由(2)的結(jié)論可得:FG⊥BC,F(xiàn)GBD,∴△BDF的面積;當(dāng)點(diǎn)D在點(diǎn)C的右側(cè)時(shí),如圖3﹣2中,作AM⊥BC于M,連接FG,∵∠BAC=90°,AB=AC,AM⊥BC,∴BC=2,BM=CM=AMBC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,點(diǎn)F是DE中點(diǎn),∴∠EAF=∠CAM=45°,AF=FD=EF,∠DAF=45°,∵△AFC是等邊三角形,∴AF=AC=FC,∠FAC=∠AFC=∠ACF=60°,∴∠CAD=∠CAF﹣∠DAF=15°,∴∠ADM=∠ACB﹣∠CAD=30°,∴DM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論