考點解析人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試卷(詳解版)_第1頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試卷(詳解版)_第2頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試卷(詳解版)_第3頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試卷(詳解版)_第4頁
考點解析人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練試卷(詳解版)_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

試卷第=page22頁,共=sectionpages22頁試卷第=page11頁,共=sectionpages11頁人教版9年級數(shù)學(xué)上冊《圓》專項訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(

)A. B.1 C. D.2、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的側(cè)面和底面,則的長為(

)A. B. C. D.3、在⊙O中按如下步驟作圖:(1)作⊙O的直徑AD;(2)以點D為圓心,DO長為半徑畫弧,交⊙O于B,C兩點;(3)連接DB,DC,AB,AC,BC.根據(jù)以上作圖過程及所作圖形,下列四個結(jié)論中錯誤的是()A.∠ABD=90° B.∠BAD=∠CBD C.AD⊥BC D.AC=2CD4、在平面直角坐標(biāo)系中,⊙O的半徑為2,點A(1,)與⊙O的位置關(guān)系是(

)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定5、如圖,四邊形ABCD內(nèi)接于⊙O,點I是△ABC的內(nèi)心,∠AIC=124°,點E在AD的延長線上,則∠CDE的度數(shù)為()A.56° B.62° C.68° D.78°6、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長是()A.6 B.3 C.2 D.7、如圖,是⊙的直徑,點C為圓上一點,的平分線交于點D,,則⊙的直徑為(

)A. B. C.1 D.28、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.9、下列多邊形中,內(nèi)角和最大的是(

)A. B. C. D.10、已知:如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、圓錐的底面半徑為3,側(cè)面積為,則這個圓錐的母線長為________.2、如圖,在平面直角坐標(biāo)系xOy中,點A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點M的坐標(biāo)為___________.3、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長為______.4、如圖,AB是⊙O的直徑,點C,D,E都在⊙O上,∠1=55°,則∠2=_____°.5、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.6、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.7、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點、、、在直角坐標(biāo)系中的坐標(biāo)分別為,,,則內(nèi)心的坐標(biāo)為______.8、劉徽是我國魏晉時期卓越的數(shù)學(xué)家,他在《九章算術(shù)》中提出了“割圓術(shù)”,利用圓的內(nèi)接正多邊形逐步逼近圓來近似計算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來近似估計的面積,設(shè)的半徑為1,則__________.9、如圖1,將一個正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.10、如圖,已知正六邊形ABCDEF的邊長為2,對角線CF和BE相交于點N,對角線DF與BE相交于點M,則MN=_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,四邊形ABCD是平行四邊形,點A,B,D均在圓上.請僅用無刻度的直尺分別下列要求畫圖.(1)在圖①中,若AB是直徑,CD與圓相切,畫出圓心;(2)在圖②中,若CB,CD均與圓相切,畫出圓心.2、如圖,點C是射線上的動點,四邊形是矩形,對角線交于點O,的平分線交邊于點P,交射線于點F,點E在線段上(不與點P重合),連接,若.(1)證明:(2)點Q在線段上,連接、、,當(dāng)時,是否存在的情形?請說明理由.3、如圖,為的直徑,為上一點,和過點的切線互相垂直,垂足為.(1)求證:平分;(2)若,,試求的半徑.4、已知拋物線經(jīng)過點(m,﹣4),交x軸于A,B兩點(A在B左邊),交y軸于C點對于任意實數(shù)n,不等式恒成立.(1)拋物線解析式;(2)在BC上方的拋物線對稱軸上是否存在點D,使得∠BDC=2∠BAC,若有求出點D的坐標(biāo),若沒有,請說明理由;(3)將拋物線沿x軸正方向平移一個單位,把得到的圖象在x軸下方的部分沿x軸向上翻折,圖的其余部分保持不變,得到一個新的圖象G,若直線y=x+b與新圖象G有四個交點,求b的取值范圍(直接寫出結(jié)果即可).5、如圖,已知點在上,點在外,求作一個圓,使它經(jīng)過點,并且與相切于點.(要求寫出作法,不要求證明)-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結(jié)合圓的周長公式進(jìn)行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關(guān)知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關(guān)鍵.2、B【解析】【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長等于圓錐底面圓的周長列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【考點】本題考查了圓錐的計算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.3、D【解析】【分析】根據(jù)作圖過程可知:AD是⊙O的直徑,=,根據(jù)垂徑定理即可判斷A、B、C正確,再根據(jù)DC=OD,可得AD=2CD,進(jìn)而可判斷D選項.【詳解】解:根據(jù)作圖過程可知:AD是⊙O的直徑,∴∠ABD=90°,∴A選項正確;∵BD=CD,∴=,∴∠BAD=∠CBD,∴B選項正確;根據(jù)垂徑定理,得AD⊥BC,∴C選項正確;∵DC=OD,∴AD=2CD,∴D選項錯誤.故選:D.【考點】本題考查作圖-復(fù)雜作圖、含30度角的直角三角形、垂徑定理、圓周角定理,解決本題的關(guān)鍵是熟練掌握相關(guān)知識點.4、A【解析】【分析】根據(jù)點A的坐標(biāo),求出OA=2,根據(jù)點與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點A在⊙O上.故選:A.【考點】本題考查了點和圓的位置關(guān)系,點和圓的位置關(guān)系是由點到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時,點在圓外;(2)當(dāng)時,點在圓上;(3)當(dāng)時,點在圓內(nèi).5、C【解析】【分析】由點I是△ABC的內(nèi)心知∠BAC=2∠IAC、∠ACB=2∠ICA,從而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圓內(nèi)接四邊形的外角等于內(nèi)對角可得答案.【詳解】解:∵點I是△ABC的內(nèi)心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四邊形ABCD內(nèi)接于⊙O,∴∠CDE=∠B=68°,故選:C.【考點】本題主要考查三角形的內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是掌握三角形的內(nèi)心的性質(zhì)及圓內(nèi)接四邊形的性質(zhì).6、C【解析】【分析】如圖,過作于過作于先證明三點共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點共線,為等邊三角形,四邊形是矩形,故選:【考點】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識是解題的關(guān)鍵.7、B【解析】【分析】過D作DE⊥AB垂足為E,先利用圓周角的性質(zhì)和角平分線的性質(zhì)得到DE=DC=1,再說明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,設(shè)BE=BC=x,AB=AE+BE=x+,最后根據(jù)勾股定理列式求出x,進(jìn)而求得AB.【詳解】解:如圖:過D作DE⊥AB,垂足為E∵AB是直徑∴∠ACB=90°∵∠ABC的角平分線BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=設(shè)BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2則(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考點】本題主要考查了圓周角定理、角平分線的性質(zhì)以及勾股定理等知識點,靈活應(yīng)用相關(guān)知識成為解答本題的關(guān)鍵.8、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點】本題考查了直角三角形的性質(zhì),垂徑定理等知識點,能求出CE=DE是解此題的關(guān)鍵.9、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進(jìn)行排除選項.【詳解】解:A、是一個三角形,其內(nèi)角和為180°;B、是一個四邊形,其內(nèi)角和為360°;C、是一個五邊形,其內(nèi)角和為540°;D、是一個六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.10、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.二、填空題1、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.2、(6,6)【解析】【分析】如圖:由題意可得M在AB、BC的垂直平分線上,則BN=CN;證得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【詳解】解:如圖∵圓M是△ABC的外接圓∴點M在AB、BC的垂直平分線上,∴BN=CN,∵點A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,點M的坐標(biāo)為(6,6).故答案為(6,6).【考點】本題考查了三角形的外接圓與外心、坐標(biāo)與圖形性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識,其中判定△OMN為等腰直角三角形是解答本題的關(guān)鍵.3、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點】本題考查的是垂徑定理、勾股定理等知識,熟練掌握垂徑定理,由勾股定理求出CE的長是解題的關(guān)鍵.4、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點】本題考查了圓周角定理,熟記圓周角定理是解題關(guān)鍵.5、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點.6、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.7、(2,3)【解析】【分析】根據(jù)A、B、C三點的坐標(biāo)建立如圖所示的坐標(biāo)系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點G的坐標(biāo),證出點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標(biāo).【詳解】解:根據(jù)A、B、C三點的坐標(biāo)建立如圖所示的坐標(biāo)系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當(dāng)y=0時,x=3,即G(3,0),∴點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內(nèi)心、平面直角坐標(biāo)系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點,把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運(yùn)用各種知識求解即可.8、【解析】【分析】如圖,過點A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過點A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關(guān)鍵.9、

【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個全等的等腰直角三角形,設(shè)等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識,根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.10、1【解析】【分析】根據(jù)正六邊形的性質(zhì)和直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵正六邊形ABCDEF的邊長為2,且對角線CF和BE相交于點N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對角線DF與BE相交于點M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點】本題考查了正多邊形和圓,正六邊形的性質(zhì),直角三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析【解析】【分析】(1)延長CB交圓于一點,把這點與點D連接,與AB交點即為圓心;(2)連接AC、BD交于點G,AC交圓于點E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O即可.【詳解】(1)如圖1所示,延長CB交圓于點E,連接DE,與AB交點即為圓心;由已知可得∠A+∠DBA=90°,∠EBA=∠C=∠A,故∠EBA+∠DBA=90°,DE為直徑;(2)如圖2所示,連接AC、BD交于點G,AC交圓于點E,射線DE交BC于F,射線FG交DA于H,連接BH交AC于O.點即為所求.說明:由已知可得,△ADB為等邊三角形,由作圖可知,AE為直徑,DF⊥BC,可得,F(xiàn)是BC中點,進(jìn)而得出H是AD中點,BH⊥AD,BH過圓心;【考點】本題考查了無刻度直尺作圖,解題關(guān)鍵是準(zhǔn)確理解題意,根據(jù)圓的有關(guān)性質(zhì)進(jìn)行作圖.2、(1)見解析(2)不存在的情形,理由見解析【解析】【分析】(1)根據(jù)矩形的性質(zhì)可得∠DAF=∠CFA,從而得到∠CAF=∠CFA,進(jìn)而AC=CF,再由OB=OC,可得∠OBC=∠OCB,然后根據(jù),可得∠ACF=2∠ECF,即可求證;(2)先假設(shè)DQ=PC,可先證得點A、C、E、D四點共圓,從而得到∠DAE=∠DCE,∠CAE=∠CDE,再由AF平分∠CAD,可得DE=CE,進(jìn)而得到點E在CD的垂直平分線上,再由,可得∠AQC=∠CPQ,從而得到CP=CQ,CQ=DQ,進(jìn)而得到點Q在CD的垂直平分線上,得到AF∥BC,AF交射線于點F相矛盾,即可求解.(1)證明:在矩形ABCD中,AD∥BC,OB=OC,∴∠DAF=∠CFA,∵AF平分∠CAD,∴∠DAF=∠CAF,∴∠CAF=∠CFA,∴AC=CF,∵OB=OC,∴∠OBC=∠OCB,∵,∴2∠ECF+∠OCB=180°,∵∠OCB+∠ACF=180°,∴∠ACF=2∠ECF,∴∠ACE=∠FCE,∴AE=EF;(2)解:不存在PC=DQ,理由如下:假設(shè)DQ=PC,∵四邊形ABCD是矩形,∴∠ADC=90°,由(1)得:AC=CF,AE=EF,∴CE⊥AF,即∠AEC=90°,∴∠AEC=∠ADC=90°,∴點A、C、E、D四點共圓,∴∠DAE=∠DCE,∠CAE=∠CDE,∵AF平分∠CAD,∴∠CAE=∠DAE=∠DCE=∠EDC,∴DE=CE,∴點E在CD的垂直平分線上,∵,∠CPQ=∠EDC+∠DEA,∴∠AQC=∠CPQ,∴CP=CQ,∵CP=DQ,∴CQ=DQ,∴點Q在CD的垂直平分線上,∴EQ⊥CD,即AF⊥CD,∵BC⊥CD,∴AF∥BC,AF交射線于點F相矛盾,∴假設(shè)不成立,原結(jié)論成立,即當(dāng)時,不存在的情形.【考點】本題主要考查了矩形的性質(zhì),等腰三角形的判定和性質(zhì),四點共圓問題,反證法,線段垂直平分線的判定,熟練掌握相關(guān)知識點,利用四點共圓解決問題是解題的關(guān)鍵.3、(1)證明見解析;(2)5.【解析】【分析】(1)連接,根據(jù)切線的性質(zhì)可得,再證,然后再根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)說明即可;(2)作于點,設(shè)的半徑為,先證四邊形是矩形,進(jìn)而求得OE和AE,然后根據(jù)勾股定理解答即可.【詳解】(1)證明:如圖1:連接,∵是切線,∴.∵,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論