強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練練習(xí)題_第1頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練練習(xí)題_第2頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練練習(xí)題_第3頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練練習(xí)題_第4頁
強(qiáng)化訓(xùn)練人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練練習(xí)題_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,點(diǎn)E是長方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.132、已知直線,點(diǎn)P在直線l上,點(diǎn),點(diǎn),若是直角三角形,則點(diǎn)P的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,點(diǎn)E是△ABC內(nèi)一點(diǎn),∠AEB=90°,D是邊AB的中點(diǎn),延長線段DE交邊BC于點(diǎn)F,點(diǎn)F是邊BC的中點(diǎn).若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.94、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC5、平行四邊形中,,則的度數(shù)是()A. B. C. D.6、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.548、如圖,OA⊥OB,OB=4,P是射線OA上一動點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動時(shí),PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變9、如圖,在長方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長是()A.4 B.3 C.4或8 D.3或610、下列∠A:∠B:∠C:∠D的值中,能判定四邊形ABCD是平行四邊形的是()A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:2第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.2、如圖,在△ABC中,D,E分別是邊AB,AC的中點(diǎn),∠B=50°.現(xiàn)將△ADE沿DE折疊點(diǎn)A落在三角形所在平面內(nèi)的點(diǎn)為A1,則∠BDA1的度數(shù)為_____.3、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個(gè)全等的直角三角形____()____4、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點(diǎn)D在CB所在直線上運(yùn)動,以AD為邊作等邊三角形ADE,則CB=___.在點(diǎn)D運(yùn)動過程中,CE的最小值為___.5、如圖,將n個(gè)邊長都為1的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個(gè)正方形重疊形成的重疊部分的面積和為_____.6、如圖,每個(gè)小正方形的邊長都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長為_____.7、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.8、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____9、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.10、如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),點(diǎn)D為線段BC上一動點(diǎn),將△OCD沿OD翻折,使點(diǎn)C落到點(diǎn)E處.當(dāng)B,E兩點(diǎn)之間距離最短時(shí),點(diǎn)D的坐標(biāo)為____.三、解答題(5小題,每小題6分,共計(jì)30分)1、(閱讀材料)材料一:我們在小學(xué)學(xué)習(xí)過正方形,知道:正方形的四條邊都相等,四個(gè)角都是直角;材料二:如圖1,由一個(gè)等腰直角三角形和一個(gè)正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關(guān)系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個(gè)與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個(gè)正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進(jìn)行證明;(3)設(shè)圖中兩個(gè)小正方形的面積分別為S1和S2,若,求S1和S2的值.2、如圖,平行四邊形ABCD中,點(diǎn)E、F分別在CD、BC的延長線上,.

(1)求證:D是EC中點(diǎn);(2)若,于點(diǎn)F,直接寫出圖中與CF相等的線段.3、如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫出以AB為對角線的正方形AEBF,點(diǎn)E、F在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為斜邊的等腰直角三角形CDM,連接BM,并直接寫出BM的長.4、如圖,ABCD是平行四邊形,AD=4,AB=5,點(diǎn)A的坐標(biāo)為(-2,0),求點(diǎn)B、C、D的坐標(biāo).5、(1)如圖a,矩形ABCD的對角線AC、BD交于點(diǎn)O,過點(diǎn)D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說明理由.

(2)如圖b,如果題目中的矩形變?yōu)榱庑危Y(jié)論應(yīng)變?yōu)槭裁??說明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫?,結(jié)論又應(yīng)變?yōu)槭裁??說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.2、C【解析】【分析】分別討論,,三種情況,求出點(diǎn)坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,代入中得:,,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,,代入中得:,,當(dāng)時(shí),取中點(diǎn)為點(diǎn),過點(diǎn)作交于點(diǎn),設(shè),,,,,,,,,在中,,解得:,,點(diǎn)有3個(gè).故選:C.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點(diǎn),AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點(diǎn),點(diǎn)F是邊BC的中點(diǎn),∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).6、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點(diǎn)B作BM⊥IA,交IA的延長線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點(diǎn)C作CN⊥DA交DA的延長線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.7、C【解析】【分析】過點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.8、D【解析】【分析】過點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點(diǎn),通過作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.9、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點(diǎn)睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.10、D【解析】【分析】兩組對角分別相等的四邊形是平行四邊形,所以∠A和∠C是對角,∠B和∠D是對角,對角的份數(shù)應(yīng)相等.【詳解】解:根據(jù)平行四邊形的判定:兩組對角分別相等的四邊形是平行四邊形,所以只有D符合條件.故選:D.【點(diǎn)睛】本題考查了平行四邊形的判定,在應(yīng)用判定定理判定平行四邊形時(shí),應(yīng)仔細(xì)觀察題目所給的條件,仔細(xì)選擇適合于題目的判定方法進(jìn)行解答,避免混用判定方法.二、填空題1、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點(diǎn)E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點(diǎn)E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點(diǎn)睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點(diǎn)并應(yīng)用解決問題是解題的關(guān)鍵.2、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點(diǎn),∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;同時(shí)還考查了三角形的中位線定理等幾何知識點(diǎn).熟練掌握各性質(zhì)是解題的關(guān)鍵.3、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個(gè)全等的直角三角形.故答案為:(1)×;(2)√【點(diǎn)睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.4、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時(shí),故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點(diǎn)H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當(dāng)FD⊥BD時(shí),F(xiàn)D最小,此時(shí)∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點(diǎn)睛】本題主要考查了等邊三角形的性質(zhì),全等三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),勾股定理等等,解題的關(guān)鍵在于能夠熟練掌握等邊三角形的性質(zhì).5、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為(n-1)個(gè)陰影部分的和.【詳解】解:由題意可得一個(gè)陰影部分面積等于正方形面積的,即是,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.6、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.7、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進(jìn)行計(jì)算即可得解.【詳解】解:×4×4=8.故答案為:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會于轉(zhuǎn)化的思想思考問題.8、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.9、4【解析】【分析】設(shè)陰影小正方形的邊長為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進(jìn)而得出大正方形的對角線的長度是4xcm,最后求出邊長a即可.【詳解】解:設(shè)陰影小正方形的邊長為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長為cm,則大正方形的對角線長為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點(diǎn)睛】本題主要考查七巧板的知識,熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.10、(3,6)【解析】【分析】連接OB,證得當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,再利用勾股定理構(gòu)造方程求解即可.【詳解】解:連接OB,∵點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質(zhì)知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,此時(shí)BE=4,∠DEB=90°,設(shè)CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點(diǎn)D的坐標(biāo)為(3,6).【點(diǎn)睛】本題考查了矩形的判定和性質(zhì),坐標(biāo)與圖形,折疊的性質(zhì),勾股定理,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,三、解答題1、(1);;;(2)證明;證明見解析;(3),【分析】(1)根據(jù)圖形可得出三對全等三角形;(2)根據(jù)正方形的性質(zhì)及全等三角形的判定定理對(1)中全等三角形依次證明即可;(3)連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,即可得出;連接HJ,KI,過點(diǎn)H作HM⊥AD于點(diǎn)M,過點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,即可得出.【詳解】解:(1);;(2)證明;由題意得,在正方形ABCD中,∵,,在和中;證明:;由題意得,在正方形HIJK中,,,∵AC為正方形ABCD的對角線,∴,在和中,∴;證明:由題意得,在正方形EBFG中,,,∵AC為正方形ABCD的對角線,∴,在和中,∴;(3)如圖,連接BG,由材料二可得,被分成4個(gè)面積相等的等腰直角三角形,.∴連接HJ,KI,過點(diǎn)H作HM⊥AD于點(diǎn)M,過點(diǎn)I作IN⊥CD于點(diǎn)N,則被分為9個(gè)面積相等的等腰直角三角形,∴.∴,.【點(diǎn)睛】題目主要考查正方形的性質(zhì)、全等三角形的判定定理及對題意的理解能力,熟練掌握全等三角形的判定定理及理解題意是解題關(guān)鍵.2、(1)見祥解;(2)AB=DC=DE=DF=CF,證明見詳解.【分析】(1)根據(jù)四邊形ABCD是平行四邊形,得出AB∥CD即(AB∥ED),AB=CD,根據(jù),可證四邊形ABDE為平行四邊形,得出AB=DE即可;(2)根據(jù)EF⊥BF,CD=ED,根據(jù)直角三角形斜邊中線可得DF=CD=ED,再證△DCF為等邊三角形即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD即(AB∥ED),AB=CD,∵,∴四邊形ABDE為平行四邊形,∴AB=DE,∴CD=ED,∴點(diǎn)D為CE中點(diǎn);(2)結(jié)論為:AB=DC=DE=DF=CF,∵EF⊥BF,CD=ED,∴DF=CD=ED,∵AB∥CD,∠ABC=60°,∴∠DCF=∠ABC=60°,∴△DCF為等邊三角形,∴CF=CD=DF=AB=ED.【點(diǎn)睛】本題考查平行四邊形的判定與性質(zhì),線段中點(diǎn)判定,直角三角形斜邊中線性質(zhì),等邊三角形判定與性質(zhì),掌握平行四邊形的判定與性質(zhì),線段中點(diǎn)判定,直角三角形斜邊中線性質(zhì),等邊三角形判定與性質(zhì)是解題關(guān)鍵.3、(1)見詳解;(2)見詳解.【分析】(1)根據(jù)勾股定理求出AB的長,以AB為對角線的正方形AEBF,根據(jù)正方形的性質(zhì)求出正方形邊長AE=,根據(jù)勾股定理構(gòu)造直角三角形橫1豎3,或橫3豎1,利用點(diǎn)A平移找到點(diǎn)E,點(diǎn)F即可完成求解;(2)根據(jù)勾股定理求出CD的長,△CDM為等腰直角三角形,設(shè)CM=DM=x,再利用勾股定理,根據(jù)勾股定理構(gòu)造橫1豎2,或橫2豎1直角三角形,利用點(diǎn)C平移得到點(diǎn)M,即可得到答案.【詳解】(1)根據(jù)勾股定理AB=,∵以AB為對角線的正方形AEBF,∴S正方形=,∵正方形AEBF的邊長為AE,∴AE2=10,∴AE=,根據(jù)勾股定理可知構(gòu)造橫1豎3或橫3豎1的直角三角形作線段AE、AF,點(diǎn)A向下平移1格,再向左平移3格得點(diǎn)E,點(diǎn)A向右平移1格,再向下平移3格得點(diǎn)F,∴連

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論