版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省樂陵市中考數(shù)學考前沖刺練習題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、一元二次方程(m+1)x2-2mx+m2-1=0有兩個異號根,則m的取值范圍是(
)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<12、如果,那么的結果是(
)A. B. C. D.3、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.5、在中,AB,CD為兩條弦,下列說法:①若,則;②若,則;③若,則弧AB=2弧CD;④若,則.其中正確的有(
)A.1個 B.2個 C.3個 D.4個二、多選題(5小題,每小題3分,共計15分)1、下列說法正確的是(
)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧2、如圖是拋物線的一部分,拋物線的頂點坐標是A(1,3),與x軸的一個交點是B(4,0),點P在拋物線上,且在直線AB上方,則下列結論正確的是(
)A. B.方程有兩個相等的實根C. D.點P到直線AB的最大距離3、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(
)A. B. C. D.4、若為圓內(nèi)接四邊形,則下列哪個選項可能成立(
)A. B.C. D.5、如圖,AB是的直徑,C是上一點,E是△ABC的內(nèi)心,,延長BE交于點F,連接CF,AF.則下列結論正確的是(
)A. B.C.△AEF是等腰直角三角形 D.若,則第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結果保留)2、在平面直角坐標系中,已知和是拋物線上的兩點,將拋物線的圖象向上平移n(n是正整數(shù))個單位,使平移后的圖象與x軸沒有交點,則n的最小值為_____.3、在Rt△ABC中,∠ACB=90°,AC=AB,點E、F分別是邊CA、CB的中點,已知點P在線段EF上,聯(lián)結AP,將線段AP繞點P逆時針旋轉90°得到線段DP,如果點P、D、C在同一直線上,那么tan∠CAP=_______.4、如圖,將矩形繞點A順時針旋轉到矩形的位置,旋轉角為.若,則的大小為________(度).5、從,0,1,2這四個數(shù)中任取一個數(shù),作為關于x的方程中a的值,則該方程有實數(shù)根的概率為_________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標;②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標;若不存在,請說明理由.2、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務,求商場銷售該品牌玩具獲利的最大利潤是多少元?五、解答題(4小題,每小題10分,共計40分)1、在平面直角坐標系中,拋物線的對稱軸為.求的值及拋物線與軸的交點坐標;若拋物線與軸有交點,且交點都在點,之間,求的取值范圍.2、如圖,在中,,,D是邊BC上一點,作射線AD,滿足,在射線AD取一點E,且.將線段AE繞點A逆時針旋轉90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點G.(1)依題意補全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關系,并證明.3、如圖,CD是⊙O的直徑,∠EOD=84°,AE交⊙O于點B,且AB=OB,求∠A的度數(shù).4、某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件,如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設每件商品的售價x元(x為整數(shù)),每個月的銷售量為y件.(1)求y與x的函數(shù)關系式并直接寫出自變量x的取值范圍;(2)設每月的銷售利潤為W,請直接寫出W與x的函數(shù)關系式.-參考答案-一、單選題1、B【解析】【分析】設方程兩根為x1,x2,根據(jù)一元二次方程的定義和根與系數(shù)的關系求解即可.【詳解】解:設方程兩根為x1,x2,根據(jù)題意得m+1≠0,,解得m<1且m≠-1,∵x1?x2<0,∴Δ>0,∴m的取值范圍為m<1且m≠-1.故選:B.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.也考查了一元二次方程根與系數(shù)的關系.2、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結論.【詳解】∵=,∴可設a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質(zhì),解本題的要點根據(jù)題意可設a,b的值,從而求出答案.3、B【解析】【分析】根據(jù)題意,可以畫出相應的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標系,由題意可得MN=4,EF=14,BC=10,DO=,設大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設點A(b,0),則設頂點為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點E的橫坐標為-7,∴點E坐標為(-7,-),
∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點】本題考查二次函數(shù)的應用,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結合的思想解答.4、D【分析】連接,根據(jù)求得半徑,進而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關鍵.5、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關系解答即可.【詳解】①若,則,正確;②若,則,故不正確;③由不能得到弧AB=2弧CD,故不正確;④若,則,錯誤.故選A.【考點】本題考查了圓心角、弧、弦之間的關系,在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對的其余各組量都分別相等.也考查了等腰三角形的性質(zhì).二、多選題1、ABD【解析】【分析】根據(jù)圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.2、BCD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)、方程與二次函數(shù)的關系、函數(shù)與不等式的關系、坐標系內(nèi)直線的平移、利用配方法求二次三項式的最值即可一一判斷.【詳解】解:由圖象可知,,則,故A選項錯誤;由圖象可知,直線與拋物線只有一個交點,則方程有兩個相等的實根,故B選項正確;當時,拋物線由最大值,則,即,故C選項正確;設直線AB的表達式為,且A(1,3),B(4,0)在直線上,則,解得,,即,由拋物線的對稱軸為得,則,即,又A(1,3),B(4,0)在拋物線上,則,解得,,將直線向上平移與拋物線有一個交點時至,要求點P到直線AB的最大距離,即點P為直線與拋物線的交點,過點作于,軸,如圖所示,由直線AB可得,為等腰直角三角形,又直線由直線平移得到,且軸,,,是等腰直角三角形,由平移的性質(zhì)可設直線的表達式為,當與拋物線有一個交點時,即,整理得,由于只有一個交點,則,解得,即直線AB向上平移了:,則,則,點P到直線AB的最大距離,故D選項正確,故選BCD.【考點】本題考查了二次函數(shù)的圖象及性質(zhì)、方程與二次函數(shù)的關系、函數(shù)與不等式的關系、平面直角坐標系內(nèi)直線的平移,解題的關鍵學會利用函數(shù)圖象解決問題,靈活運用相關知識解決問題,本題難點在于要求拋物線上的點到直線的最大距離即求直線平移至與拋物線有一個交點時交點到直線的距離.3、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關系,熟練運用對稱軸的范圍求2a與b的關系,二次函數(shù)與方程及不等式之間的關系是解決本題的關鍵.4、BD【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內(nèi)接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內(nèi)接四邊形的性質(zhì),注意:圓內(nèi)接四邊形的對角互補.5、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關鍵.三、填空題1、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.2、4【解析】【分析】通過A、B兩點得出對稱軸,再根據(jù)對稱軸公式算出b,由此可得出二次函數(shù)表達式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標一樣,∴A、B是對稱的兩點,∴對稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點】本題考查二次函數(shù)對稱軸的性質(zhì),頂點式的變形及拋物線的平移,關鍵在于根據(jù)對稱軸的性質(zhì)從題意中判斷出對稱軸.3、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當點P在線段CD上時,同理可證:DA=DC,設AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當點D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當點P在線段CD上時,同理可證:DA=DC,設AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉,直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點.解題的關鍵在于表示出正切中線段的長度.4、20【分析】先利用旋轉的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉的性質(zhì):對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.5、【分析】根據(jù)一元二次方程的定義,可得,根據(jù)一元二次方程的判別式的意義得到,可得,然后根據(jù)概率公式求解.【詳解】解:∵當且,一元二次方程有實數(shù)根∴且從,0,1,2這四個數(shù)中任取一個數(shù),符合條件的結果有所得方程有實數(shù)根的概率為故答案為:【點睛】本題考查了列舉法求概率,一元二次方程的定義,一元二次方程根的判別式,掌握以上知識是解題的關鍵.四、簡答題1、(1);(2)①連接交拋物線對稱軸于點,則點即為所求,點的坐標為;②存在;點的坐標為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點式.(2)①因為關于對稱軸對稱,所以,由兩點之間線段最短,知連接交拋物線對稱軸于點,則點即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點坐標.②設點,根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標,分當在上方、下方兩種情況,列關于m的方程,解出并取大于-2的解,即可寫出的坐標.【詳解】(1)∵,,結合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達式為;(2)①∵關于對稱軸對稱,∴,∴連接交拋物線對稱軸于點,則點即為所求.將點,的坐標代入一次函數(shù)表達式,得直線的函數(shù)表達式為.拋物線的對稱軸為直線,當時,,故點的坐標為;②存在;設點,則,.當在上方時,,,,解得(舍)或;當在下方時,,,,解得(舍)或,綜上所述,的值為或5,點的坐標為或.【考點】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎,動點問題中分類討論與數(shù)形結合轉化為方程問題是解題的關鍵.2、(1),;(2)50元或80元;(3)商場銷售該品牌玩具獲利的最大利潤是10560元【解析】【分析】(1)根據(jù)銷售量與銷售單價之間的變化關系就可以直接求出y與x之間的關系式;根據(jù)銷售問題的利潤=售價-進價就可以表示出w與x之間的關系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當45≤x≤52時,y隨x增大而增大,于是得到結論.【詳解】解:(1)依等量關系式“銷量=原銷量-因漲價而減少銷量,總利潤=單個利潤×銷量”可列式為:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由題意可得:10+1300x30000=10000,解得:x=50或x=80,∴該玩具銷售單價x應定為50元或80元(3)由題意可得:,解得:45≤x≤52,W=10+1300x30000=10(+12250,∵10<0,W隨x的增大而減小,又∵45≤x≤52,∴當x=52時,W有最大值,最大值為10560元,∴商場銷售該品牌玩具獲利的最大利潤是10560元.【考點】本題考查了一元二次方程的解法的運用,二次函數(shù)的解析式的運用,二次函數(shù)的頂點式的運用,解答時求出二次函數(shù)的解析式是關鍵.五、解答題1、(1)a=-1;坐標為,;(2).【解析】【分析】(1)利用拋物線的對稱軸方程得到x=-=-1,解方程求出a即可得到拋物線的解析式為y=-x2-2x;然后解方程-x2-2x=0可得到拋物線與x軸的交點坐標;(2)拋物線y=-x2-2x+m由拋物線y=-x2-2x上下平移|m|和單位得到,利用函數(shù)圖象可得到當x=1時,y<0,即-1-2+m<0;當x=-1時,y≥0,即-1+2+m≥0,然后解兩個不等式求出它們的公共部分可得到m的范圍.【詳解】根據(jù)題意得,解得,所以拋物線的解析式為,當時,,解得,,所以拋物線與軸的交點坐標為,;拋物線拋物線由拋物線上下平移和單位得到,而拋物線的對稱軸為直線,∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職礦山通風安全管理應用管理(管理技術)試題及答案
- 2026年沖突管理手冊(沖突管理指南編寫)試題及答案
- 2025年高職汽車檢測與維修技術(故障診斷)試題及答案
- 2025年高職(寵物醫(yī)療技術)疾病診療階段測試題及答案
- 2025年高職(輪機工程技術)船舶動力裝置維護綜合測試試題及答案
- 2025年大學大一(人工智能技術)人工智能應用技術階段測試題
- 禁毒網(wǎng)格員培訓課件
- 2025年注冊會計師(CPA)考試 會計科目強化訓練試卷及答案詳解
- 山東農(nóng)業(yè)大學就業(yè)指南
- 天津市第一0二中學2025-2026學年高三上學期12月月考語文試題(含答案)
- 《電力建設安全工作規(guī)程》-第1部分火力發(fā)電廠
- 歌曲《我會等》歌詞
- 干部因私出國(境)管理有關要求
- 八年級物理上冊期末測試試卷-附帶答案
- 小學英語五年級上冊Unit 5 Part B Let's talk 教學設計
- 老年癡呆科普課件整理
- 學生校服供應服務實施方案
- 2022年鈷資源產(chǎn)業(yè)鏈全景圖鑒
- GB/T 22900-2022科學技術研究項目評價通則
- 自動控制系統(tǒng)的類型和組成
- GB/T 15171-1994軟包裝件密封性能試驗方法
評論
0/150
提交評論