版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省遷安市中考數學基礎強化考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、2020年7月20日,寧津縣人民政府印發(fā)《津縣城市生活垃圾分類制度實施方案》的通知,全面推行生活垃圾分類.下列垃圾分類標志分別是廚余垃圾、有害垃圾、其他垃圾和可回收物,其中既是軸對稱圖形又是中心對稱圖形的是(
)A. B. C. D.2、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.3、已知點在半徑為8的外,則(
)A. B. C. D.4、已知關于x的一元二次方程標有兩個不相等的實數根,則實數k的取值范圍是()A. B.C.且 D.5、下列各點中,關于原點對稱的兩個點是()A.(﹣5,0)與(0,5) B.(0,2)與(2,0)C.(﹣2,﹣1)與(﹣2,1) D.(2,﹣1)與(﹣2,1)二、多選題(5小題,每小題3分,共計15分)1、下面的圖形中,繞著一個點旋轉120°后,能與原來的位置重合的是(
)A. B. C. D.2、已知點,下面的說法正確的是(
)A.點與點關于軸對稱,則點的坐標為B.點繞原點按順時針方向旋轉后到點,則點的坐標為C.點與點關于原點中心對稱,則點的坐標為D.點先向上平移個單位,再向右平移個單位到點,則點的坐標為3、下列方程中,有實數根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=04、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結論中正確的結論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線5、關于拋物線y=(x﹣2)2+1,下列說法不正確的是(
)A.開口向上,頂點坐標(﹣2,1)
B.開口向下,對稱軸是直線x=2C.開口向下,頂點坐標(2,1)
D.當x>2時,函數值y隨x值的增大而增大第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在ABC中,∠C=90°,AB=10,在同一平面內,點O到點A,B,C的距離均等于a(a為常數).那么常數a的值等于________.2、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F兩點,連接EF,已知,.(1)以點E,O,F,D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.3、在圓內接四邊形ABCD中,,則的度數為______.4、不透明袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黃球的概率是_______.5、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當位置隨機地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(球扔在界線上或長方形區(qū)域外不計實驗結果),他將若干次有效實驗的結果繪制成了②所示的折線統(tǒng)計圖,由此他估計不規(guī)則圖案的面積大約為_____m2.四、簡答題(2小題,每小題10分,共計20分)1、某超市銷售一種商品,每件成本為50元,銷售人員經調查發(fā)現,銷售單價為100元時,每月的銷售量為50件,而銷售單價每降低2元,則每月可多售出10件,且要求銷售單價不得低于成本.(1)求該商品每月的銷售量y(件)與銷售單價x(元)之間的函數關系式;(不需要求自變量取值范圍)(2)若使該商品每月的銷售利潤為4000元,并使顧客獲得更多的實惠,銷售單價應定為多少元?(3)超市的銷售人員發(fā)現:當該商品每月銷售量超過某一數量時,會出現所獲利潤反而減小的情況,為了每月所獲利潤最大,該商品銷售單價應定為多少元?2、如圖,為了測量一棟樓的高度,小明同學先在操場上處放一面鏡子,向后退到處,恰好在鏡子中看到樓的頂部;再將鏡子放到處,然后后退到處,恰好再次在鏡子中看到樓的頂部(在同一條直線上),測得,如果小明眼睛距地面高度,為,試確定樓的高度.五、解答題(4小題,每小題10分,共計40分)1、如圖,在△ABC是⊙O的內接三角形,∠B=45°,連接OC,過點A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.2、解一元二次方程(1)(2)3、如圖,二次函數的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.4、如圖,直角三角形中,,為中點,將繞點旋轉得到.一動點從出發(fā),以每秒1的速度沿的路線勻速運動,過點作直線,使.(1)當點運動2秒時,另一動點也從出發(fā)沿的路線運動,且在上以每秒1的速度勻速運動,在上以每秒2的速度勻速運動,過作直線使,設點的運動時間為秒,直線與截四邊形所得圖形的面積為,求關于的函數關系式,并求出的最大值.(2)當點開始運動的同時,另一動點從處出發(fā)沿的路線運動,且在上以每秒的速度勻速運動,在上以每秒2的速度勻度運動,是否存在這樣的,使為等腰三角形?若存在,直接寫出點運動的時間的值,若不存在請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據軸對稱圖形和中心對稱圖形的概念去判斷即可.【詳解】A、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;B、是軸對稱圖形也是中心對稱圖形,故滿足題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;D、既不是軸對稱圖形也不是中心對稱圖形,故不滿足題意;故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形,關鍵是緊扣軸對稱圖形和中心對稱圖形的概念.2、C【分析】根據中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.3、A【解析】【分析】根據點P與⊙O的位置關系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關系,關鍵是要牢記判斷點與圓的位置關系的方法.4、C【解析】【分析】由一元二次方程定義得出二次項系數k≠0;由方程有兩個不相等的實數根,得出“△>0”,解這兩個不等式即可得到k的取值范圍.【詳解】解:由題可得:,解得:且;故選:C.【考點】本題考查了一元二次方程的定義和根的判別式,涉及到了解不等式等內容,解決本題的關鍵是能讀懂題意并牢記一元二次方程的概念和根的判別式的內容,能正確求出不等式(組)的解集等,本題對學生的計算能力有一定的要求.5、D【分析】根據關于原點對稱的點的橫坐標互為相反數,縱坐標互為相反數,可得答案.【詳解】解:A、(﹣5,0)與(0,5)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數,縱坐標互為相反數的特征,故A錯誤;B、(0,2)與(2,0)橫、縱坐標不滿足關于原點對稱的點的橫坐標互為相反數,縱坐標互為相反數的特征,故B錯誤;C、(﹣2,﹣1)與(﹣2,1)關于x軸對稱,故C錯誤;D、關于原點對稱的點的橫坐標互為相反數,縱坐標互為相反數,故D正確;故選:D.【點睛】本題考查了關于原點對稱的點的坐標,關于原點對稱的點的橫坐標互為相反數,縱坐標互為相反數.二、多選題1、AB【解析】【分析】根據旋轉的性質對題中圖形進行分析即可.【詳解】解:A、旋轉任意角度都與原圖形重合,故符合題意;B、旋轉最小的度數是120度與原圖形重合,故符合題意;C、旋轉最小的度數是72度(72度的整倍數都可以)與原圖形重合,則旋轉120度不能與原圖形重合,故不符合題意;D、旋轉最小的度數是90度(90度的整倍數都可以)與原圖形重合,則旋轉120度不能與原圖形重合,故不符合題意.故選AB.【考點】本題主要考查了圖形的旋轉,理解旋轉的定義是解題的關鍵.2、BD【解析】【分析】A、根據軸對稱的性質判斷即可;B、根據旋轉變換的性質判斷即可;C、根據中心對稱的性質判斷即可;D、根據平移變換的性質判斷即可;【詳解】A、點A與點B關于軸對稱,則點B的坐標為B(-2,-3),A選項錯誤,不符合題意;B、點繞原點按順時針方向旋轉后到點,則點的坐標為,B選項正確,符合題意;C、點與點關于原點中心對稱,則點的坐標為B(2,-3),C選項錯誤,不符合題意;D、點先向上平移個單位,再向右平移個單位到點,則點的坐標為,D選項正確,符合題意;故選:BD【考點】本題考查平移變換,軸對稱變換,中心對稱,旋轉變換等知識,解題的關鍵是熟練掌握平移變換,旋轉變換,軸對稱變換,中心對稱的性質,屬于??碱}型.3、ABC【解析】【分析】根據直接開方法可確定A選項正確;根據因式分解法可確定B選項正確;根據方程的判別式,當時,方程有兩個不等的實數根,當時,方程有兩個相等的實數根,當時,方程無實數根,可判斷C選項正確,D選項錯誤.【詳解】A.,解得:,,方程有實數根,A選項正確;B.,解得:,,方程有實數根,B選項正確;C.,,,,方程有實數根,C選項正確;D.,,,,方程無實數根,D選項錯誤.故選:ABC.【考點】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關鍵.4、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數為∵的度數為∴的度數為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質,圓弧的度數與其所對的圓周角的度數之間的關系,切線的概念的理解,等邊三角形的判定與性質,靈活運用以上知識解題是解題的關鍵.5、ABC【解析】【分析】由拋物線的解析式可求得其對稱軸、開口方向、頂點坐標,進一步可得出其增減性,可得出答案.【詳解】解:∵y=(x﹣2)2+1,∴拋物線開口向上,對稱軸為直線x=2,頂點坐標為(2,1),∴A、B、C不正確;當x>2時,y隨x的增大而增大,∴D正確,故選:ABC.【考點】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=中,對稱軸為直線x=h,頂點坐標為(h,k).三、填空題1、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據直角三角形斜邊上的中線等于斜邊的一半,即可知道點到點A,B,C的距離相等,如下圖:,,故答案是:5.【點睛】本題考查了直角三角形的外接圓的外心,解題的關鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.2、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設,則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設,則,,在中,,∴當時,EF有最小值,故答案為:.【考點】本題考查正方形的性質,全等三角形的判定與性質,二次函數的性質,熟練掌握二次函數求最值的方法是解題的關鍵.3、110°【分析】根據圓內接四邊形對角互補,得∠D+∠B=180°,結合已知求解即可.【詳解】∵圓內接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內接四邊形互補的性質,熟練掌握并運用性質是解題的關鍵.4、【解析】【分析】用黃球的個數除以總球的個數即可得出取出黃球的概率.【詳解】解:∵不透明的袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,∴從袋子中隨機取出1個球,則它是黃球的概率為;故答案為:.【考點】此題考查了概率公式,明確概率的意義是解答問題的關鍵,用到的知識點為:概率=所求情況數與總情況數之比.5、8.4【分析】首先假設不規(guī)則圖案面積為x,根據幾何概率知識求解不規(guī)則圖案占長方形的面積大?。焕^而根據折線圖用頻率估計概率,綜合以上列方程求解.【詳解】解:假設不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據幾何概率公式小球落在不規(guī)則圖案的概率為:,當事件A試驗次數足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點睛】本題考查幾何概率以及用頻率估計概率,并在此基礎上進行了題目創(chuàng)新,解題關鍵在于清晰理解題意,能從復雜的題目背景當中找到考點化繁為簡,創(chuàng)新題目對基礎知識要求極高.四、簡答題1、(1);(2)70元;(3)80元.【解析】【分析】(1)明確題意,找到等量關系求出函數關系式即可;(2)根據題意,按照等量關系“銷售量(售價成本)”列出方程,求解即可得到該商品此時的銷售單價;(3)設每月所獲利潤為,按照等量關系列出二次函數,并根據二次函數的性質求得最值即可.【詳解】解:(1)∵依題意得,∴與的函數關系式為;(2)∵依題意得,即,解得:,,∵∴當該商品每月銷售利潤為,為使顧客獲得更多實惠,銷售單價應定為元;(3)設每月總利潤為,依題意得∵,此圖象開口向下∴當時,有最大值為:(元),∴當銷售單價為元時利潤最大,最大利潤為元,故為了每月所獲利潤最大,該商品銷售單價應定為元.【考點】本題考查了二次函數在實際生活中的應用,根據題意找到等量關系并掌握二次函數求最值的方法是解題的關鍵.2、32米【解析】【分析】設關于的對稱點為,根據光線的反射可知,延長、相交于點,連接并延長交于點,先根據鏡面反射的基本性質,得出,再運用相似三角形對應邊成比例即可解答.【詳解】設關于的對稱點為,根據光線的反射可知,延長、相交于點,連接并延長交于點,由題意可知且、∴∴∴即:∴∴答:樓的高度為米.【考點】本題考查了相似三角形的應用、鏡面反射的基本性質,準確作出輔助線是關鍵.五、解答題1、(1)見解析;(2)【分析】(1)如圖所示,連接OA,由圓周角定理可得∠COA=90°,再由平行線的性質得到∠OAD+∠COA=180°,則∠OAD=90°,由此即可證明;(2)連接OB,過點O作OE⊥AB,垂足為E,先由等腰三角形的性質與三角形內角和定理求出∠COB=30°,則∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,則AB=.【詳解】解:(1)如圖所示,連接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵點A在圓O上,∴AD是⊙O的切線;(2)連接OB,過點O作OE⊥AB,垂足為E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)證可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1,由勾股定理可得,,∴AB=.【點睛】本題主要考查了圓周角定理,切線的判定,等腰三角形的性質與判定,含30度角的直角三角形的性質,三角形內角和定理,勾股定理,熟知相關知識是解題的關鍵.2、(1)x1=2,x2=-2;(2)x1=4,x2=-2.【解析】【分析】(1)先把方程變形為x2=4,然后利用直接開平方法解方程;(2)先把方程化為一般式,然后利用因式分解法解方程.【詳解】解:(1)∵x2=4,∴x=±2,∴x1=2,x2=-2;(2)方程整理為x2-2x-8=0.(x-4)(x+2)=0,x-4=0或x+2=0,∴x1=4,x2=-2.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了直接開平方法解方程.3、1
y=?x2+2x+3,y=?x+3;有最大值;存在滿足條件的點,其坐標為或【解析】【分析】可設拋物線解析式為頂點式,由點坐標可求得拋物線的解析式,則可求得點坐標,利用待定系數法可求得直線解析式;設出點坐標,從而可表示出的長度,利用二次函數的性質可求得其最大值;過作軸,交于點,過和于,可設出點坐標,表示出的長度,由條件可證得為等腰直角三角形,則可得到關于點坐標的方程,可求得點坐標.【詳解】解:拋物線的頂點的坐標為,可設拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標為,可設直線解析式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服務器管理制度規(guī)范
- 幼兒園規(guī)范禮儀制度
- 煙草落實制度促規(guī)范
- 酒吧空間制度規(guī)范標準
- 領導帶班制度填寫規(guī)范
- 廢水處理廠設備升級技術方案
- 河道涵閘設施設計與維護方案
- 樁基施工水文勘察方案
- 市政管網改造的預算控制方案
- 農村生活污水處理設施提質改造項目運營管理方案
- 普惠托育服務機構申請表、承諾書、認定書
- 工程春節(jié)停復工方案(3篇)
- 社區(qū)基金使用管理辦法
- 幼兒園小班數學《好吃的》課件
- 《海洋生物學》課程教學大綱
- WST856-2025安全注射標準解讀
- 低壓控制基本知識培訓課件
- 星間激光鏈路構建-洞察及研究
- “十三五”規(guī)劃重點-銻礦石及精銻項目建議書(立項報告)
- 環(huán)衛(wèi)公司內部管理制度
- 第3章 同位素示蹤技術課件
評論
0/150
提交評論