版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊【旋轉】綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在方格紙中,將繞點按順時針方向旋轉90°后得到,則下列四個圖形中正確的是()A. B.C. D.2、如圖,在平面直角坐標系xOy中,△ABC頂點的橫、縱坐標都是整數(shù).若將△ABC以某點為旋轉中心,旋轉得到△A'B'C',則旋轉中心的坐標是(
)A.(1,1) B.(1,﹣1) C.(0,0) D.(1,﹣2)3、在下列面點烘焙模具中,其圖案是中心對稱圖形的是(
)A. B.C. D.4、有下列說法:①平行四邊形具有四邊形的所有性質:②平行四邊形是中心對稱圖形:③平行四邊形的任一條對角線可把平行四邊形分成兩個全等的三角形;④平行四邊形的兩條對角線把平行四邊形分成4個面積相等的小三角形.其中正確說法的序號是(
).A.①②④ B.①③④ C.①②③ D.①②③④5、將拋物線先繞坐標原點旋轉,再向右平移個單位長度,所得拋物線的解析式為(
)A. B.C. D.6、如圖,將繞點順時針旋轉得到,使點的對應點恰好落在邊上,點的對應點為,連接.下列結論一定正確的是(
)A. B. C. D.7、如圖,將繞點A按順時針旋轉一定角度得到,點B的對應點D恰好落在BC邊上,若,,則CD的長為(
).A. B. C. D.18、把圖中的交通標志圖案繞著它的中心旋轉一定角度后與自身重合,則這個旋轉角度至少為(
)A.30° B.90° C.120° D.180°9、如圖,菱形對角線交點與坐標原點重合,點,則點的坐標為(
)A. B. C. D.10、如圖,將△ABC繞點B順時針旋轉60°得△DBE,點C的對應點E恰好落在AB延長線上,連接AD.下列結論一定正確的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,將的斜邊AB繞點A順時針旋轉得到AE,直角邊AC繞點A逆時針旋轉得到AF,連結EF.若,,且,則_____.2、如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,點D在線段BC上,BD=3,將線段AD繞點A逆時針旋轉90°得到線段AE,EF⊥AC,垂足為點F.則AF的長為________.3、如圖,正比例函數(shù)y=kx(k≠0)的圖像經(jīng)過點A(2,4),AB⊥x軸于點B,將△ABO繞點A逆時針旋轉90°得到△ADC,則直線AC的函數(shù)表達式為_____.4、如圖,正方形的邊長為4,點E是對角線上的動點(點E不與A,C重合),連接交于點F,線段繞點F逆時針旋轉得到線段,連接.下列結論:①;②;③若四邊形的面積是正方形面積的一半,則的長為;④.其中正確的是_________.(填寫所有正確結論的序號)5、如圖,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC為一邊作正方形BDEC設正方形的對稱中心為O,連接AO,則AO=_____.6、如圖,平面直角坐標系xOy在邊長為1的小正方形組成的網(wǎng)格中,正方形ABCD的邊AD在y軸正半軸上邊BC在第一象限,且,,將正方形ABCD繞點A順時針旋轉(),若點B的對應點恰好落在坐標軸上,則點C的對應點的坐標為_________.7、將圖1剪成若干小塊,再圖2中進行拼接平移后能夠得到①、②、③中的__________.8、若點與關于原點對稱,則=_______.9、如圖,在直角坐標系中,△ABC的頂點坐標分別為A(1,2),B(-2,2),C(-1,0).將△ABC繞某點順時針旋轉90°得到△DEF,則旋轉中心的坐標是_____________.
10、如圖,將n個邊長都為1cm的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為________三、解答題(6小題,每小題5分,共計30分)1、如圖,D是的邊延長線上一點,連接,把繞點順時針旋轉60°恰好得到,其中,是對應點,若,求的度數(shù).2、如圖,在正方形ABCD中,點P在直線BC上,作射線AP,將射線AP繞點A逆時針旋轉45°,得到射線AQ,交直線CD于點Q,過點B作BE⊥AP于點E,交AQ于點F,連接DF.(1)依題意補全圖形;(2)用等式表示線段BE,EF,DF之間的數(shù)量關系,并證明.3、如圖,先將繞點順時針旋轉得到,再將線段繞點順時針旋轉得到,連接、、,且.(1)若.①求證:、、三點共線;②求的長;(2)若,,點在邊上,求線段的最小值.4、如圖,P是等邊內的一點,且,將繞點B逆時針旋轉,得到.(1)旋轉角為_____度;(2)求點P與點Q之間的距離;(3)求的度數(shù);(4)求的面積.5、如圖,在矩形ABCD中,對角線AC的中點為O,點G,H在對角線AC上,AG=CH,直線GH繞點O逆時針旋轉α角,與邊AB、CD分別相交于點E、F(點E不與點A、B重合).(1)求證:四邊形EHFG是平行四邊形;(2)若∠α=90°,AB=9,AD=3,求AE的長.6、如圖,在Rt△ABC中,∠BAC=90°,∠ACB=30°,將△ABC繞點C逆時針旋轉60°得到△CDE,點A、B的對應點分別是D、E,點F是邊BC中點,連結AD、EF.(1)求證:△ACD是等邊三角形;(2)判斷AD與EF有怎樣的數(shù)量關系,并說明理由.-參考答案-一、單選題1、B【解析】【分析】根據(jù)繞點按順時針方向旋轉90°逐項分析即可.【詳解】A、是由關于過B點與OB垂直的直線對稱得到,故A選項不符合題意;B、是由繞點按順時針方向旋轉90°后得到,故B選項符合題意;C、與對應點發(fā)生了變化,故C選項不符合題意;D、是由繞點按逆時針方向旋轉90°后得到,故D選項不符合題意.故選:B.【考點】本題考查旋轉變換.解題的關鍵是弄清旋轉的方向和旋轉的度數(shù).2、A【解析】【分析】對應點連線的垂直平分線的交點即為旋轉中心,然后直接寫成坐標即可.【詳解】解:如圖點O′即為旋轉中心,坐標為O′(1,1).故選:A【考點】本題主要考查了旋轉中心的確定方法,熟練掌握對應點連線的垂直平分線的交點即為旋轉中心是解題的關鍵.3、D【解析】【分析】根據(jù)中心對稱圖形的性質得出圖形旋轉180°,與原圖形能夠完全重合的圖形是中心對稱圖形,分別判斷得出即可.【詳解】解:A.不是中心對稱圖形,不符合題意;B.不是中心對稱圖形,不符合題意;C.不是中心對稱圖形,不符合題意;D.是中心對稱圖形,符合題意;故選:D.【考點】此題主要考查了中心對稱圖形的性質,根據(jù)中心對稱圖形的定義判斷圖形是解決問題的關鍵.4、D【解析】【分析】根據(jù)平行四邊形的性質、中心對稱圖形的定義和全等三角形的判定進行逐一判定即可.【詳解】解:∵平行四邊形是四邊形的一種,∴平行四邊形具有四邊形的所有性質,故①正確:∵平行四邊形繞其對角線的交點旋轉180度能夠與自身重合,∴平行四邊形是中心對稱圖形,故②正確:∵四邊形ABCD是平行四邊形,∴AD=BC,CD=AB,∠ADC=∠CBA∴△ADC≌△CBA(SAS)同理可以證明△ABD≌△CDB∴平行四邊形的任一條對角線可把平行四邊形分成兩個全等的三角形,故③正確;∵四邊形ABCD是平行四邊形,∴OA=OC,OD=OB,∴,,,∴,∴平行四邊形的兩條對角線把平行四邊形分成4個面積相等的小三角形,故④正確.故選D.【考點】本題主要考查了中心對稱圖形的定義,平行四邊形的性質,全等三角形的判定,三角形中線把面積分成相同的兩部分等等,解題的關鍵在于能夠熟練掌握相關知識進行求解.5、C【解析】【分析】先根據(jù)點繞坐標原點旋轉的坐標變換規(guī)律、待定系數(shù)法求出旋轉后的拋物線的解析式,再根據(jù)二次函數(shù)的圖象平移的規(guī)律即可得.【詳解】將拋物線的頂點式為則其與x軸的交點坐標為,頂點坐標為點繞坐標原點旋轉的坐標變換規(guī)律:橫、縱坐標均變?yōu)橄喾磾?shù)則繞坐標原點旋轉后,所得拋物線與x軸的交點坐標為,頂點坐標為設旋轉后所得拋物線為將點代入得:,解得即旋轉后所得拋物線為則再向右平移個單位長度,所得拋物線的解析式為即故選:C.【考點】本題考查了點繞坐標原點旋轉的坐標變換規(guī)律、待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的圖象平移的規(guī)律,熟練掌握坐標旋轉變換規(guī)律和二次函數(shù)的圖象平移規(guī)律是解題關鍵.6、D【解析】【分析】利用旋轉的性質得AC=CD,BC=EC,∠ACD=∠BCE,所以選項A、C不一定正確再根據(jù)等腰三角形的性質即可得出,所以選項D正確;再根據(jù)∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判斷選項B不一定正確即可.【詳解】解:∵繞點順時針旋轉得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴選項A、C不一定正確,∴∠A=∠EBC,∴選項D正確.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴選項B不一定正確;故選D.【考點】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰三角形的性質.7、D【解析】【分析】根據(jù)直角三角形兩銳角互余可得∠C=30°,根據(jù)含30°角的直角三角形的性質可求出BC的長,然后根據(jù)旋轉的性質可得AB=AD,然后判斷出△ABD是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得BD=AB,然后根據(jù)CD=BC-BD計算即可得解.【詳解】解:∵∠B=60°,∴∠C=90°-60°=30°,∵AB=1,∴BC=2AB=2,由旋轉的性質得,AB=AD,∴△ABD是等邊三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故選:D.【考點】本題考查了旋轉的性質,含30°角的直角三角形的性質,等邊三角形的判定與性質,熟記性質并判斷出△ABD是等邊三角形是解題的關鍵.8、C【解析】【分析】根據(jù)圖形的對稱性,用360°除以3計算即可得解.【詳解】解:∵360°÷3=120°,∴旋轉的角度是120°的整數(shù)倍,∴旋轉的角度至少是120°.故選C.【考點】本題考查了旋轉對稱圖形,仔細觀察圖形求出旋轉角是120°的整數(shù)倍是解題的關鍵.9、B【解析】【分析】根據(jù)菱形的中心對稱性,A、C坐標關于原點對稱,利用橫反縱也反的口訣求解即可.【詳解】∵菱形是中心對稱圖形,且對稱中心為原點,∴A、C坐標關于原點對稱,∴C的坐標為,故選C.【考點】本題考查了菱形的中心對稱性質,原點對稱,熟練掌握菱形的性質,關于原點對稱點的坐標特點是解題的關鍵.10、C【解析】【詳解】根據(jù)旋轉的性質得,∠ABD=∠CBE=60°,∠E=∠C,AB=BD,則△ABD為等邊三角形,即AD=AB=BD,∠ADB=60°因為∠ABD=∠CBE=60°,則∠CBD=60°,所以∠ADB=∠CBD,∴AD∥BC.故選C.二、填空題1、【解析】【分析】由旋轉的性質可得,,由勾股定理可求EF的長.【詳解】解:由旋轉的性質可得,,,且,,,,故答案為.【考點】本題考查了旋轉的性質,勾股定理,靈活運用旋轉的性質是本題的關鍵.2、1【解析】【分析】根據(jù)勾股定理先求出BC邊長,再求出DC長,過點D作DM垂直AC,可證,即AF=DM,在等腰直角△DMC中可求DM,即可直接求解.【詳解】解:在Rt△ABC中,∠BAC=90°,AB=AC=4,根據(jù)勾股定理得,AB2+AC2=BC2,∴.又∵BD=3,∴DC=BC?BD=.過點D作DM⊥AC于點M,由旋轉的性質得∠DAE=90°,AD=AE,∴∠DAC+∠EAF=90°.又∵∠DAC+∠ADM=90°,∴∠ADM=∠EAF.在Rt△ADM和Rt△EAF中,.∴(AAS),∴AF=DM.在等腰Rt△DMC中,由勾股定理得,DM2+MC2=DC2,∴DM=1,∴AF=DM=1.故答案為:1.【考點】本題主要考查等腰直角三角形,旋轉的性質以及全等三角形的判定與性質,證明△ADM≌△EAF是解答本題的關鍵.3、y=-0.5x+5【解析】【分析】直接把點A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點B,可得出OB,AB的長,再由△ABO繞點A逆時針旋轉90°得到△ADC,由旋轉不變性的性質可知DC=OB,AD=AB,故可得出C點坐標,再把C點和A點坐標代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經(jīng)過點A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點B,∴OB=2,AB=4,∵△ABO繞點A逆時針旋轉90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【考點】本題考查的是一次函數(shù)圖象上點的坐標特點及圖形旋轉的性質,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.4、①②④【解析】【分析】過E作EM⊥BC,EN⊥CD,可證△BEM≌△FEN得BE=EF,故①正確;可證四邊形BEFG是正方形得∠EBG=90°,BE=BG,可證∠ABE=∠CBG,進而得到△ABE≌△CBG,所以∠BAE=∠BCG,得∠BCA+∠BCG=90°,即∠ACG=90°,可證②正確;由可求BE=,過E作EH⊥AB,則∠AEH=180°-∠BAC-∠AHE=45°,知AH=HE,設AH=HE=x,則BH=4-x,由,得到AH=HE=2,從而得到,知③錯誤;由②可知,△ABE≌△CBG,所以AE=CG,而CG+CE=AE+CE=AC可求,④正確.【詳解】解:過E作EM⊥BC,EN⊥CD∵四邊形ABCD是正方形,AC平分∠BCD∴EM=EN∵∠EMC=∠MCN=∠ENC=90°∴∠MEN=90°∵EF⊥BE∴∠BEM+∠MEF=∠FEN+∠MEF=90°∴∠BEM=∠FEN∵∠EMB=∠ENF=90°,EM=EN∴△BEM≌△FEN∴BE=EF故①正確;∵∠BEF=∠EFG=90°,EF=FG,BE=EF∴BE=FG,BE∥FG∴四邊形BEFG是平行四邊形∵∠BEF=90°,BE=EF∴四邊形BEFG是正方形∴∠EBG=90°,BE=BG∵∠ABC=90°∴∠ABE+∠EBC=∠EBC+∠CBG=90°∴∠ABE=∠CBG又∵AB=BC,BE=BG∴△ABE≌△CBG∴∠BAE=∠BCG∵∠BAE+∠BCA=90°∴∠BCA+∠BCG=90°,即∠ACG=90°故②正確;∵∴∴BE=過E作EH⊥AB∵四邊形ABCD是正方形∴∠BAC=45°∵∠AHE=90°∴∠AEH=180°-∠BAC-∠AHE=45°∴AH=HE設AH=HE=x,則BH=4-x∵∴解得∴AH=HE=2∴故③錯誤;由②可知,△ABE≌△CBG∴AE=CG∴CG+CE=AE+CE=AC∵∠ACB=45°∴AC=∴CG+CE=故④正確,所以答案為:①②④.【考點】本題是正方形綜合題,主要考查了旋轉的性質,正方形的判定與性質,角平分線的性質,勾股定理,全等三角形的判定與性質,熟練掌握全等三角形的判定與性質,綜合運用正方形的判定與性質定理,勾股定理等知識是解題的關鍵.5、;【解析】【分析】連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,F(xiàn)B=AC=6,進而得到AF=8+6=14,∠FAO=45°,根據(jù)AO=AF×cos45°進行計算即可.【詳解】解:連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,∵O是正方形DBCE的對稱中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四邊形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,,∴△AOC≌△FOB(ASA),∴AO=FO,F(xiàn)B=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×=.故答案為.【考點】本題考查了正方形的性質和全等三角形的判定與性質.本題的關鍵是通過作輔助線來構建全等三角形,然后將已知和所求線段轉化到直角三角形中進行計算.6、或##或【解析】【分析】分兩種情形:如圖1中,當B落在x軸的正半軸上時,過點作H⊥x軸于點H.利用全等三角形的性質求解.當點落在y軸的負半軸上時,(4,?2).【詳解】如圖,當B落在x軸的正半軸上時,過點作H⊥x軸于點H,∵A(0,2),B(4,2),∴AB=4,OA=2,∴O=,∵∠AO=∠A=∠H=90°,∴∠AO+∠H=90°,∠H+∠H=90°,∴∠AO=∠H,∴△AO≌△H(AAS),∴OA=H=2,O=H=,∴OH=,∴當點B落在y軸的負半軸上時,C1(4,?2).綜上所述,滿足條件的點C的坐標為或;故答案為:或【考點】本題考查坐標與圖形變化?旋轉,全等三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.7、①②##②①【解析】【詳解】解:根據(jù)圖形1可得剪成若干小塊,再圖2中進行拼接平移后能夠得到①、②,不能拼成③,故答案為:①②.8、##0.5##【解析】【詳解】解:∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為:.9、(1,-1)【解析】【分析】由旋轉的性質可得A的對應點為D,B的對應點為E,C的對應點為F,同時旋轉中心在AD和BE的垂直平分線上,進而求出旋轉中心坐標.【詳解】解:由旋轉的性質,得A的對應點為D,B的對應點為E,C的對應點為F作BE和AD的垂直平分線,交點為P∴點P的坐標為(1,-1)故答案為:(1,-1)【考點】本題考查坐標與圖形變化—旋轉,圖形的旋轉需結合旋轉角求旋轉后的坐標,常見的旋轉角有30°,45°,60°,90°,180°.10、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個這樣的正方形重疊部分(陰影部分)的面積和為×4,n個這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm2.【考點】本題考查了正方形的性質,熟悉正方形的性質是解題關鍵.三、解答題1、42°【解析】【分析】根據(jù)旋轉的性質得到,再根據(jù)計算解題即可.【詳解】解:∵把繞點A順時針旋轉60°恰好得到,∴,∴.故答案為:【考點】本題考查旋轉、角的和差等知識,是基礎考點,掌握相關知識是解題關鍵.2、(1)補全圖形見解析;(2)BE+DF=EF,證明見解析.【解析】【分析】(1)根據(jù)題意補全圖形即可.(2)延長FE到H,使EH=EF,根據(jù)題意證明△ABH≌△ADF,然后根據(jù)全等三角形的性質即可證明.【詳解】(1)補全圖形(2)BE+DF=EF.證明:延長FE到H,使EH=EF∵BE⊥AP,∴AH=AF,∴∠HAP=∠FAP=45°,∵四邊形ABCD為正方形,∴AB=AD,∠BAD=90°∴∠BAP+∠2=45°,∵∠1+∠BAP=45°∴∠1=∠2,∴△ABH≌△ADF,∴DF=BH,∵BE+BH=EH=EF,∴BE+DF=EF.【考點】此題考查了正方形的性質和全等三角形的性質,解題的關鍵是根據(jù)題意作出輔助線.3、(1)①證明見詳解;②BG=4(2)線段PD的最小值為2+2【解析】【分析】(1)①由旋轉的性質可得∠ACD=90°=∠BCE,AB=DE,BC=CE,AC=CD,∠ABC=∠DEC=135°,由等腰三角形的性質可得∠BEC=45°=∠CBE,可證∠BEC+∠CED=180°,可得結論;②通過證明四邊形ABDG是矩形,可得AD=BG,由等腰直角三角形的性質可求解;(2)由垂線段最短可得當PD⊥AB時,PD的長度有最小值,先證點P,點E,點D三點共線,由勾股定理可求DE的長,由正方形的性質可得BC=PE=2,即可求解.(1)①證明:如圖,連接AG,∵將△ABC繞點C順時針旋轉90°得到△DEC,∴△ABC≌△DEC,∠ACD=90°=∠BCE,∴AB=DE,BC=CE,AC=CD,∠ABC=∠DEC=135°∴∠BEC=45°=∠CBE,∴∠BEC+∠CED=180°∴B、E、D三點共線;②∵將線段DE繞點D順時針旋轉90°得到DG∴DE=DG,∠EDG=90°∴AB=DE=DG,∵∠ABE=∠ABC-∠CBE=90°,∴∠ABE+∠EDG=180°,∴AB//DG,∴四邊形ABDG是平行四邊形,又∵∠BDG=90°∴四邊形ABDG是矩形,∴AD=BG,∵AC=CD=4,∠ACD=90°,∴AD=AC=4,BG=4;(2)如圖:∵點P在邊AB上,∴當PD⊥AB時,PD的長度有最小值由旋轉的性質可得:∠ABC=∠CED=∠BCE=90°,∴BC//DE,∵∠ABC+∠BPD=180°,∴DP//BC,∴點P,點E,點D三點共線,∵AC=2CE,∴BC=CE=2,又∵∠ABC=∠BPE=∠BCE=90°,∴四邊形BPEC是正方形,∴BC=PE=2,∵CD=AC=4,CE=2,∠CED=90°,∴DE=∴DP=2+2,∴線段PD的最小值為2+2.【考點】本題是幾何變換綜合題,考查了旋轉的性質,全等三角形的性質,等腰三角形的性質,矩形的判定和性質,勾股定理等知識,靈活運用這些性質解決問題是解題的關鍵.4、(1)60(2)4(3)150°(4)9.【解析】【分析】(1)根據(jù)△QCB是△PAB繞點B逆時針旋轉得到,可知∠ABC為旋轉角即可得出答案,(2)連接PQ,根據(jù)等邊三角形得性質得∠ABC=60°,BA=BC,由旋轉的性質得BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,BP=BQ=4,∠PBQ=60°,于是可判斷△PBQ是等邊三角形,所以PQ=PB=4;(3)先利用勾股定理的逆定理證明△PCQ是直角三角形,且∠QPC=90°,再加上∠BPQ=60°,然后計算∠BPQ+∠QPC即可.(4)由直角三角形的性質可求CH,PH的長,由勾股定理和三角形的面積公式可求解.(1)∵△ABC是等邊三角形,∴∠ABC=60°,∵△QCB是△PAB繞點B逆時針旋轉得到的,∴旋轉角為60°故答案為:60;(2)連接PQ,如圖1,∵△ABC是等邊三角形,∴∠ABC=60°,BA=BC,∵△QCB是△PAB繞點B逆時針旋轉得到的,∴△QCB≌△PAB,∴BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∵BP=BQ=4,∠PBQ=60°,∴△PBQ是等邊三角形,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 邢臺2025年河北邢臺寧晉縣事業(yè)單位招聘教師350人筆試歷年參考題庫附帶答案詳解
- 職業(yè)健康與心理健康的協(xié)同管理框架
- 福建2025年福建三明醫(yī)學科技職業(yè)學院招聘19人筆試歷年參考題庫附帶答案詳解
- 湘潭2025年湖南湘潭市醫(yī)療器械審評核查中心招聘筆試歷年參考題庫附帶答案詳解
- 河北2025年河北公安警察職業(yè)學院選聘11人筆試歷年參考題庫附帶答案詳解
- 成都2025年四川成都市溫江區(qū)“三員合一”全職黨建指導員招聘12人筆試歷年參考題庫附帶答案詳解
- 廣元2025年四川廣元蒼溪縣機關事業(yè)單位考調66人筆試歷年參考題庫附帶答案詳解
- 宣城2025年安徽宣城市教學研究室選聘教研員筆試歷年參考題庫附帶答案詳解
- 天津2025年天津市和平區(qū)事業(yè)單位面向會寧籍未就業(yè)高校畢業(yè)生招聘筆試歷年參考題庫附帶答案詳解
- 合肥2025年安徽合肥長豐縣水湖鎮(zhèn)招聘村(社區(qū))后備干部12人筆試歷年參考題庫附帶答案詳解
- 傳統(tǒng)米醋制作工藝流程介紹
- 2025年住院醫(yī)師規(guī)范化培訓考試(腎臟內科)歷年參考題庫含答案詳解(5卷)
- 血液小學生課件
- 森林消防安全知識課件
- T-CRHA 089-2024 成人床旁心電監(jiān)測護理規(guī)程
- 燃氣管道缺陷修復技術-深度研究
- 刑事訴訟法學全套課件
- DBJ51-T 040-2021 四川省工程建設項目招標代理操作規(guī)程
- 青鳥消防JBF62E-T1型測溫式電氣火災監(jiān)控探測器使用說明書
- 武漢市江岸區(qū)2022-2023學年七年級上學期期末地理試題【帶答案】
- 自動駕駛系統(tǒng)關鍵技術
評論
0/150
提交評論