版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版七年級(jí)數(shù)學(xué)下冊(cè)期末解答題綜合復(fù)習(xí)附答案一、解答題1.如圖1,用兩個(gè)邊長相同的小正方形拼成一個(gè)大的正方形.(1)如圖2,若正方形紙片的面積為1,則此正方形的對(duì)角線AC的長為dm.(2)如圖3,若正方形的面積為16,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為12的長方形紙片,使它的長和寬之比為3∶2,他能裁出嗎?請(qǐng)說明理由.2.工人師傅準(zhǔn)備從一塊面積為36平方分米的正方形工料上裁剪出一塊面積為24平方分米的長方形的工件.(1)求正方形工料的邊長;(2)若要求裁下的長方形的長寬的比為4:3,問這塊正方形工料是否滿足需要?(參考數(shù)據(jù):,)3.如圖,這是由8個(gè)同樣大小的立方體組成的魔方,體積為64.(1)求出這個(gè)魔方的棱長;(2)圖中陰影部分是一個(gè)正方形ABCD,求出陰影部分的邊長.4.如圖,紙上有五個(gè)邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個(gè)正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數(shù)軸的單位長度的線段為邊作一個(gè)直角三角形,以數(shù)軸的-1點(diǎn)為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點(diǎn)A,那么點(diǎn)A表示的數(shù)是多少?點(diǎn)A表示的數(shù)的相反數(shù)是多少?(3)你能把十個(gè)小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請(qǐng)畫出示意圖,并求它的邊長5.某市在招商引資期間,把已倒閉的油泵廠出租給外地某投資商,該投資商為減少固定資產(chǎn)投資,將原來的400m2的正方形場地改建成300m2的長方形場地,且其長、寬的比為5:3.(1)求原來正方形場地的周長;(2)如果把原來的正方形場地的鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,那么這些鐵柵欄是否夠用?試?yán)盟鶎W(xué)知識(shí)說明理由.二、解答題6.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.綜合與實(shí)踐課上,同學(xué)們以“一個(gè)直角三角形和兩條平行線”為背景開展數(shù)學(xué)活動(dòng),如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說明理由.(3)如圖3,若∠A=30°,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫出與的數(shù)量關(guān)系并說明理由.8.如圖,已知直線射線,.是射線上一動(dòng)點(diǎn),過點(diǎn)作交射線于點(diǎn),連接.作,交直線于點(diǎn),平分.(1)若點(diǎn),,都在點(diǎn)的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點(diǎn)的運(yùn)動(dòng)過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請(qǐng)說明理由.9.如圖,已知直線射線CD,.P是射線EB上一動(dòng)點(diǎn),過點(diǎn)P作PQEC交射線CD于點(diǎn)Q,連接CP.作,交直線AB于點(diǎn)F,CG平分.(1)若點(diǎn)P,F(xiàn),G都在點(diǎn)E的右側(cè),求的度數(shù);(2)若點(diǎn)P,F(xiàn),G都在點(diǎn)E的右側(cè),,求的度數(shù);(3)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請(qǐng)說明理由.10.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請(qǐng)你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請(qǐng)說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請(qǐng)你猜想、、之間的數(shù)量關(guān)系并證明.三、解答題11.為了安全起見在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交又照射巡視.若燈轉(zhuǎn)動(dòng)的速度是每秒2度,燈轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射線才開始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射線到達(dá)之前.若射出的光束交于點(diǎn),過作交于點(diǎn),且,則在轉(zhuǎn)動(dòng)過程中,請(qǐng)?zhí)骄颗c的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說明理由.12.如圖1,點(diǎn)O在上,,射線交于點(diǎn)C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點(diǎn)E,則______;(3)若將繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),其余條件都不變,在旋轉(zhuǎn)過程中,的度數(shù)是否發(fā)生變化?請(qǐng)說明你的結(jié)論.13.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì)來求∠APC.(1)按小明的思路,易求得∠APC的度數(shù)為度;(2)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(3)在(2)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.14.(1)學(xué)習(xí)了平行線以后,香橙同學(xué)想出了過一點(diǎn)畫一條直線的平行線的新方法,她是通過折紙做的,過程如(圖1).①請(qǐng)你仿照以上過程,在圖2中畫出一條直線b,使直線b經(jīng)過點(diǎn)P,且,要求保留折紙痕跡,畫出所用到的直線,指明結(jié)果.無需寫畫法:②在(1)中的步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)P的直線a的線.(2)已知,如圖3,,BE平分,CF平分.求證:(寫出每步的依據(jù)).15.如圖1,在平面直角坐標(biāo)系中,,且滿足,過作軸于(1)求三角形的面積.(2)發(fā)過作交軸于,且分別平分,如圖2,若,求的度數(shù).(3)在軸上是否存在點(diǎn),使得三角形和三角形的面積相等?若存在,求出點(diǎn)坐標(biāo);若不存在;請(qǐng)說明理由.四、解答題16.小明在學(xué)習(xí)過程中,對(duì)教材中的一個(gè)有趣問題做如下探究:(習(xí)題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點(diǎn).求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).直接寫出與的數(shù)量關(guān)系.17.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)18.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點(diǎn)D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關(guān)系為.(2)如圖4,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,連接BE、CD交于點(diǎn)O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.19.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.20.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.【參考答案】一、解答題1.(1);(2)不能,理由見解析【分析】(1)由正方形面積,可求得正方形邊長,然后利用勾股定理即可求出對(duì)角線長;(2)利用方程思想求出長方形的長邊,然后與正方形邊長比較大小即可.【詳解】解:解析:(1);(2)不能,理由見解析【分析】(1)由正方形面積,可求得正方形邊長,然后利用勾股定理即可求出對(duì)角線長;(2)利用方程思想求出長方形的長邊,然后與正方形邊長比較大小即可.【詳解】解:(1)∵正方形紙片的面積為,∴正方形的邊長,∴.故答案為:.(2)不能;根據(jù)題意設(shè)長方形的長和寬分別為和.∴長方形面積為:,解得:,∴長方形的長邊為.∵,∴他不能裁出.【點(diǎn)睛】本題考查了算術(shù)平方根在長方形和正方形面積中的應(yīng)用,靈活的進(jìn)行算術(shù)平方根計(jì)算及無理數(shù)大小比較是解題的關(guān)鍵.2.(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設(shè)長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(解析:(1)6分米;(2)滿足.【分析】(1)由正方形面積可知,求出的值即可;(2)設(shè)長方形的長寬分別為4a分米、3a分米,根據(jù)面積得出方程,求出,求出長方形的長和寬和6比較即可.【詳解】解:(1)正方形工料的邊長為分米;(2)設(shè)長方形的長為4a分米,則寬為3a分米.則,解得:,長為,寬為∴滿足要求.【點(diǎn)睛】本題主要考查了算術(shù)平方根及實(shí)數(shù)大小比較,用了轉(zhuǎn)化思想,即把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題.3.(1)棱長為4;(2)邊長為:(或)【分析】(1)由立方體的體積為棱長的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長為,則,所以,即正方體的棱長為4.解析:(1)棱長為4;(2)邊長為:(或)【分析】(1)由立方體的體積為棱長的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長為,則,所以,即正方體的棱長為4.(2)因?yàn)檎襟w的棱長為4,所以AB=.【點(diǎn)睛】本題考查的是立方根與算術(shù)平方根的理解與計(jì)算,由實(shí)際的情境去理解問題本身就是求一個(gè)數(shù)的立方根與算術(shù)平方根是關(guān)鍵.4.(1)5;;(2);;(3)能,.【分析】(1)易得5個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個(gè)小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個(gè)小正方形,那么組成的大正方形的面積為10,邊長為10的算術(shù)平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點(diǎn)A表示的數(shù)為:;點(diǎn)A表示的相反數(shù)為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點(diǎn):1.作圖—應(yīng)用與設(shè)計(jì)作圖;2.圖形的剪拼.5.(1)原來正方形場地的周長為80m;(2)這些鐵柵欄夠用.【分析】(1)正方形邊長=面積的算術(shù)平方根,周長=邊長×4,由此解答即可;(2)長、寬的比為5:3,設(shè)這個(gè)長方形場地寬為3am,則長為解析:(1)原來正方形場地的周長為80m;(2)這些鐵柵欄夠用.【分析】(1)正方形邊長=面積的算術(shù)平方根,周長=邊長×4,由此解答即可;(2)長、寬的比為5:3,設(shè)這個(gè)長方形場地寬為3am,則長為5am,計(jì)算出長方形的長與寬可知長方形周長,同理可得正方形的周長,比較大小可知是否夠用.【詳解】解:(1)=20(m),4×20=80(m),答:原來正方形場地的周長為80m;(2)設(shè)這個(gè)長方形場地寬為3am,則長為5am.由題意有:3a×5a=300,解得:a=±,∵3a表示長度,∴a>0,∴a=,∴這個(gè)長方形場地的周長為2(3a+5a)=16a=16(m),∵80=16×5=16×>16,∴這些鐵柵欄夠用.【點(diǎn)睛】本題考查了算術(shù)平方根的實(shí)際應(yīng)用,解答本題的關(guān)鍵是明確題意,求出長方形和正方形的周長.二、解答題6.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;解析:(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.7.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°解析:(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過點(diǎn)C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點(diǎn)C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.8.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點(diǎn)睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等是解題的關(guān)鍵.9.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設(shè)∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.10.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.三、解答題11.(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,解析:(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時(shí),根據(jù)2t=1?(30+t),可得t=30;當(dāng)90<t<150時(shí),根據(jù)1?(30+t)+(2t-180)=180,可得t=110;(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,根據(jù)∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會(huì)變化.【詳解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×=72°,故答案為:72;(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,①當(dāng)0<t<90時(shí),如圖1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得t=30;②當(dāng)90<t<150時(shí),如圖2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1?(30+t)+(2t-180)=180,解得t=110,綜上所述,當(dāng)t=30秒或110秒時(shí),兩燈的光束互相平行;(3)∠BAC和∠BCD關(guān)系不會(huì)變化.理由:設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會(huì)變化.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角的和差關(guān)系的運(yùn)用,解決問題的關(guān)鍵是運(yùn)用分類思想進(jìn)行求解,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).12.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結(jié)論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質(zhì)即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當(dāng)0゜<α<20゜時(shí),∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當(dāng)α=20゜時(shí),OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當(dāng)20゜<α<90゜時(shí),如圖∵CF平分∠OCQ∴∠OCF=∠QCF設(shè)∠OCF=∠QCF=x則∠OCQ=2x∵M(jìn)N∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點(diǎn)睛】本題主要考查了角平分線的定義,平行線的判定與性質(zhì),角的和差關(guān)系,注意分類討論,引入適當(dāng)?shù)牧勘阌谶\(yùn)算簡便.13.(1)110°;(2)∠CPD=∠α+∠β,見解析;(3)當(dāng)P在BA延長線時(shí),∠CPD=∠β-∠α;當(dāng)P在AB延長線上時(shí),∠CPD=∠α-∠β【分析】(1)過P作PE∥AB,通過平行線性質(zhì)求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,見解析;(3)當(dāng)P在BA延長線時(shí),∠CPD=∠β-∠α;當(dāng)P在AB延長線上時(shí),∠CPD=∠α-∠β【分析】(1)過P作PE∥AB,通過平行線性質(zhì)求∠APC即可;(2)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【詳解】解:(1)過點(diǎn)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案為110°;(2)∠CPD=∠α+∠β,理由是:如圖3,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)當(dāng)P在BA延長線時(shí),∠CPD=∠β-∠α,理由是:如圖4,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)P在AB延長線時(shí),∠CPD=∠α-∠β,理由是:如圖5,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點(diǎn)睛】本題考查了平行線的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力,題目是一道比較典型的題目,分類討論是解題的關(guān)鍵.14.(1)①見解析;②垂;(2)見解析【分析】(1)①過點(diǎn)折紙,使痕跡垂直直線,然后過點(diǎn)折紙使痕跡與前面的痕跡垂直,從而得到直線;②步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)的直線的垂線.(2)先根據(jù)解析:(1)①見解析;②垂;(2)見解析【分析】(1)①過點(diǎn)折紙,使痕跡垂直直線,然后過點(diǎn)折紙使痕跡與前面的痕跡垂直,從而得到直線;②步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)的直線的垂線.(2)先根據(jù)平行線的性質(zhì)得到,再利用角平分線的定義得到,然后根據(jù)平行線的判定得到結(jié)論.【詳解】(1)解:①如圖2所示:②在(1)中的步驟(b)中,折紙實(shí)際上是在尋找過點(diǎn)的直線的垂線.故答案為垂;(2)證明:平分,平分(已知),,(角平分線的定義),(已知),(兩直線平行,內(nèi)錯(cuò)角相等),(等量代換),(等式性質(zhì)),(內(nèi)錯(cuò)角相等,兩直線平行).【點(diǎn)睛】本題考查了作圖復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了平行線的性質(zhì)與判定.15.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計(jì)算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計(jì)算出三角形ABC的面積=4;(2)由于CB∥y軸,BD∥AC,則∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,過E作EF∥AC,則BD∥AC∥EF,然后利用角平分線的定義可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根據(jù)待定系數(shù)法確定直線AC的解析式為y=x+1,則G點(diǎn)坐標(biāo)為(0,1),然后利用S△PAC=S△APG+S△CPG進(jìn)行計(jì)算.【詳解】解:(1)由題意知:a=?b,a?b+4=0,解得:a=?2,b=2,∴A(?2,0),B(2,0),C(2,2),∴S△ABC=;(2)∵CB∥y軸,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,過E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分別平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:設(shè)P點(diǎn)坐標(biāo)為(0,t),直線AC的解析式為y=kx+b,把A(?2,0)、C(2,2)代入得:,解得,∴直線AC的解析式為y=x+1,∴G點(diǎn)坐標(biāo)為(0,1),∴S△PAC=S△APG+S△CPG=|t?1|?2+|t?1|?2=4,解得t=3或?1,∴P點(diǎn)坐標(biāo)為(0,3)或(0,?1).【點(diǎn)睛】本題考查了絕對(duì)值、平方的非負(fù)性,平行線的判定與性質(zhì):內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行;兩直線平行,內(nèi)錯(cuò)角相等.四、解答題16.[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習(xí)題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對(duì)頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點(diǎn)共線
AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點(diǎn)睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.17.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H點(diǎn)作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點(diǎn)O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M(jìn)1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點(diǎn)睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點(diǎn)作平行線是解題的關(guān)鍵,準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系也很重要.18.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結(jié)論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結(jié)論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結(jié)論.試題解析:解:解決問題連接AE.∵點(diǎn)D、E分別是邊AB、BC的中點(diǎn),∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,△AOB的面積=2△AOE的面積.設(shè)△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四邊形ADOE的面積為=a+b=6+4.5=10.5.19.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個(gè)以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 搶救車使用試題及答案
- 甘肅省白銀市平川區(qū)2025-2026學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試題(含答案)
- 輔警的教育培訓(xùn)課件
- 妊娠劇吐急診護(hù)理的病例分析
- 糖尿病足部護(hù)理創(chuàng)新模式
- 2026年深圳中考語文考前終極預(yù)測試卷(附答案可下載)
- 《GAT 16.86-2012道路交通管理信息代碼 第86部分:劇毒化學(xué)品公路運(yùn)輸通行證通行區(qū)域代碼》專題研究報(bào)告
- 2026年深圳中考物理寒假提分特訓(xùn)試卷(附答案可下載)
- 2026年大學(xué)大二(口腔修復(fù)學(xué))口腔修復(fù)臨床技術(shù)測試題及答案
- 水電工施工技能培訓(xùn)課件
- 2026年吉林大學(xué)附屬中學(xué)公開招聘教師備考題庫(4人)及參考答案詳解
- 2025年大學(xué)旅游管理(旅游服務(wù)質(zhì)量管理)試題及答案
- 打捆機(jī)培訓(xùn)課件
- 2026年淺二度燒傷處理
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘考試備考題庫及答案解析
- 河北省NT名校聯(lián)合體2025-2026學(xué)年高三上學(xué)期1月月考英語(含答案)
- 2025-2026學(xué)年滬科版八年級(jí)數(shù)學(xué)上冊(cè)期末測試卷(含答案)
- 衛(wèi)生管理研究論文
- 委托市場調(diào)研合同范本
- 畜牧安全培訓(xùn)資料課件
- 2025年度黨支部書記述職報(bào)告
評(píng)論
0/150
提交評(píng)論