2026屆安徽省安慶市區(qū)二十三校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第1頁
2026屆安徽省安慶市區(qū)二十三校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第2頁
2026屆安徽省安慶市區(qū)二十三校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第3頁
2026屆安徽省安慶市區(qū)二十三校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第4頁
2026屆安徽省安慶市區(qū)二十三校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆安徽省安慶市區(qū)二十三校數(shù)學(xué)九年級第一學(xué)期期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,將邊長為6的正六邊形鐵絲框ABCDEF(面積記為S1)變形為以點D為圓心,CD為半徑的扇形(面積記為S2),則S1與S2的關(guān)系為()A.S1=S2 B.S1<S2 C.S1=S2 D.S1>S22.二次函數(shù)的圖象與軸的交點個數(shù)是()A.2個 B.1個 C.0個 D.不能確定3.體育課上,某班兩名同學(xué)分別進行5次短跑訓(xùn)練,要判斷哪一名同學(xué)的成績比較穩(wěn)定,通常需要比較這兩名學(xué)生成績的()A.平均數(shù) B.頻數(shù) C.中位數(shù) D.方差4.一個長方形的面積為,且一邊長為,則另一邊的長為()A. B. C. D.5.在反比例函數(shù)的圖象的每一條曲線上,都隨的增大而減小,則的取值范圍是()A. B. C. D.6.在反比例函數(shù)的圖像上有三點、、,若,而,則下列各式正確的是()A. B.C. D.7.一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項分別是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-18.如圖,已知等邊△ABC的邊長為4,以AB為直徑的圓交BC于點F,CF為半徑作圓,D是⊙C上一動點,E是BD的中點,當AE最大時,BD的長為()A. B. C.4 D.69.如圖,PA是⊙O的切線,切點為A,PO的延長線交⊙O于點B,連接AB,若∠B=25°,則∠P的度數(shù)為()A.25° B.40° C.45° D.50°10.下列選項的圖形是中心對稱圖形的是()A. B. C. D.11.如圖,,垂足為點,,,則的度數(shù)為()A. B. C. D.12.為執(zhí)行“均衡教育”政策,某區(qū)2018年投入教育經(jīng)費7000萬元,預(yù)計到2020年投入2.317億元,若每年投入教育經(jīng)費的年平均增長百分率為x,則下列方程正確的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=2317二、填空題(每題4分,共24分)13.x臺拖拉機,每天工作x小時,x天耕地x畝,則y臺拖拉機,每天工作y小時,y天耕____畝.14.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=,將Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,點B經(jīng)過的路徑為,則圖中陰影部分的面積是_____.15.在△ABC中,∠B=45°,cosA=,則∠C的度數(shù)是_____.16.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).17.關(guān)于的一元二次方程有兩個不相等實數(shù)根,則的取值范圍是________.18.二次函數(shù)y=3x2+3的最小值是__________.三、解答題(共78分)19.(8分)[閱讀理解]對于任意正實數(shù)、,∵,∴,∴(只有當時,).即當時,取值最小值,且最小值為.根據(jù)上述內(nèi)容,回答下列問題:問題1:若,當______時,有最小值為______;問題2:若函數(shù),則當______時,函數(shù)有最小值為______.20.(8分)解方程:x2﹣6x﹣40=021.(8分)若拋物線(a、b、c是常數(shù),)與直線都經(jīng)過軸上的一點P,且拋物線L的頂點Q在直線上,則稱此直線與該拋物線L具有“一帶一路”關(guān)系,此時,直線叫做拋物線L的“帶線”,拋物線L叫做直線的“路線”.(1)若直線與拋物線具有“一帶一路”關(guān)系,求m、n的值.(2)若某“路線”L的頂點在反比例函數(shù)的圖象上,它的“帶線”的解析式為,求此路的解析式.22.(10分)如圖,在中,,點在邊上,經(jīng)過點和點且與邊相交于點.(1)求證:是的切線;(2)若,求的半徑.23.(10分)(1);(2)已知一個幾何體的三視圖如圖所示,求該幾何體的體積.24.(10分)“道路千萬條,安全第一條”,《中華人民共和國道路交通管理條例》規(guī)定:“小汽車在城市街道上的行駛速度不得超過”,一輛小汽車在一條城市街道上由西向東行駛,在據(jù)路邊處有“車速檢測儀”,測得該車從北偏西的點行駛到北偏西的點,所用時間為.(1)試求該車從點到點的平均速度(結(jié)果保留根號);(2)試說明該車是否超速.25.(12分)已知關(guān)于x的方程x2-(k-1)x+2k=0,若方程的一個根是–4,求另一個根及k26.某校在宣傳“民族團結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖:請結(jié)合圖中所給信息,解答下列問題(1)本次調(diào)查的學(xué)生共有人;(2)補全條形統(tǒng)計圖;(3)七年級一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機選出兩名同學(xué)參加學(xué)校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.

參考答案一、選擇題(每題4分,共48分)1、D【分析】由正六邊形的長得到的長,根據(jù)扇形面積公式=×弧長×半徑,可得結(jié)果.【詳解】由題意:的長度==24,∴S2=×弧長×半徑=×24×6=72,∵正六邊形ABCDEF的邊長為6,∴為等邊三角形,∠ODE=60°,OD=DE=6,過O作OG⊥DE于G,如圖:∴,∴,∴S1>S2,故選:D.本題考查了正多邊形和圓、正六邊形的性質(zhì)、扇形面積公式;熟練掌握正六邊形的性質(zhì),求出弧長是解決問題的關(guān)鍵.2、A【分析】通過計算判別式的值可判斷拋物線與軸的交點個數(shù).【詳解】由二次函數(shù),

∴.∴拋物線與軸有二個公共點.

故選:A.本題考查了二次函數(shù)與一元二次方程之間的關(guān)系,拋物線與軸的交點個數(shù)取決于的值.3、D【分析】要判斷成績的穩(wěn)定性,一般是通過比較兩者的方差實現(xiàn),據(jù)此解答即可.【詳解】解:要判斷哪一名同學(xué)的成績比較穩(wěn)定,通常需要比較這兩名學(xué)生成績的方差.故選:D.本題考查了統(tǒng)計量的選擇,屬于基本題型,熟知方差的意義是解題關(guān)鍵.4、A【分析】根據(jù)長方形的面積公式結(jié)合多項式除以多項式運算法則解題即可.【詳解】長方形的面積為,且一邊長為,另一邊的長為故選:A.本題考查多項式除以單項式、長方形的面積等知識,是常見考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.5、C【分析】根據(jù)反比例函數(shù)的性質(zhì),可得出1-m>0,從而得出m的取值范圍.【詳解】∵反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而減小,∴1-m>0,解得m<1,故答案為m<1.本題考查了反比例函數(shù)的性質(zhì),當k>0時,在每個象限內(nèi),y都隨x的增大而減??;當k<0時,在每個象限內(nèi),y都隨x的增大而增大.6、A【分析】首先判斷反比例函數(shù)的比例系數(shù)為負數(shù),可得反比例函數(shù)所在象限為二、四,其中在第四象限的點的縱坐標總小于在第二象限的縱坐標,進而判斷在同一象限內(nèi)的點(x1,y1)和(x1,y1)的縱坐標的大小即可.【詳解】∵反比例函數(shù)的比例系數(shù)為-1<0,∴圖象的兩個分支在第二、四象限;∵第四象限的點的縱坐標總小于在第二象限的縱坐標,點(x1,y1)、(x1,y1)在第四象限,點(x3,y3)在第二象限,∴y3最大,∵x1>x1,y隨x的增大而增大,∴y1>y1,∴y3>y1>y1.故選A.考查反比例函數(shù)圖象上點的坐標特征;用到的知識點為:反比例函數(shù)的比例系數(shù)小于0,圖象的1個分支在第二、四象限;第四象限的點的縱坐標總小于在第二象限的縱坐標;在同一象限內(nèi),y隨x的增大而增大.7、D【解析】根據(jù)一元二次方程一般式的系數(shù)概念,即可得到答案.【詳解】一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項分別是:3,-2,-1,故選D.本題主要考查一元二次方程一般式的系數(shù)概念,掌握一元二次方程一般式的系數(shù),是解題的關(guān)鍵.8、B【分析】點E在以F為圓心的圓上運到,要使AE最大,則AE過F,根據(jù)等腰三角形的性質(zhì)和圓周角定理證得F是BC的中點,從而得到EF為△BCD的中位線,根據(jù)平行線的性質(zhì)證得CD⊥BC,根據(jù)勾股定理即可求得結(jié)論.【詳解】解:點D在⊙C上運動時,點E在以F為圓心的圓上運到,要使AE最大,則AE過F,連接CD,∵△ABC是等邊三角形,AB是直徑,∴EF⊥BC,∴F是BC的中點,∵E為BD的中點,∴EF為△BCD的中位線,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故BD=,故選:B.本題主要考查等邊三角形的性質(zhì),圓周角定理,三角形中位線的性質(zhì)以及勾股定理,熟練并正確的作出輔助圓是解題的關(guān)鍵.9、B【分析】連接OA,由圓周角定理得,∠AOP=2∠B=50°,根據(jù)切線定理可得∠OAP=90°,繼而推出∠P=90°﹣50°=40°.【詳解】連接OA,由圓周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切線,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故選:B.本題考查圓周角定理、切線的性質(zhì)、三角形內(nèi)角和定理,解題的關(guān)鍵是求出∠AOP的度數(shù).10、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;B、是中心對稱圖形,故此選項正確;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤;故選:B.本題主要考查的是中心對稱圖形,理解中心對稱圖形的定義是判斷這四個圖形哪一個是中心對稱圖形的關(guān)鍵.11、B【解析】由平行線的性質(zhì)可得,繼而根據(jù)垂直的定義即可求得答案.【詳解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故選B.本題考查了垂線的定義,平行線的性質(zhì),熟練掌握相關(guān)知識是解題的關(guān)鍵.12、C【分析】本題為增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設(shè)每年投入教育經(jīng)費的年平均增長百分率為x,再根據(jù)“2018年投入7000萬元”可得出方程.【詳解】設(shè)每年投入教育經(jīng)費的年平均增長百分率為x,則2020年的投入為7000(1+x)2=23170由題意,得7000(1+x)2=23170.故選:C.此題考查了由實際問題抽象出一元二次方程的知識,平均增長率問題,一般形式為a(1+x)2=b,a為起始時間的有關(guān)數(shù)量,b為終止時間的有關(guān)數(shù)量.二、填空題(每題4分,共24分)13、【分析】先求出一臺拖拉機1小時的工作效率,然后求y臺拖拉機在y天,每天工作y小時的工作量.【詳解】一臺拖拉機1小時的工作效率為:∴y臺拖拉機,y天,每天y小時的工作量=故答案為:本題考查工程問題,解題關(guān)鍵是求解出一臺拖拉機1小時的工作效率.14、【解析】先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【詳解】解:如圖,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.本題考查了扇形的面積公式:S=,也考查了勾股定理以及旋轉(zhuǎn)的性質(zhì).15、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根據(jù)三角形的內(nèi)角和定理可得∠C=75°.16、【解析】設(shè)出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應(yīng)用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.17、且【解析】一元二次方程的定義及判別式的意義可得a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,解不等式組即可求出a的取值范圍.【詳解】∵關(guān)于x的一元二次方程ax2-3x+1=1有兩個不相等的實數(shù)根,

∴a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,

解得:a<且a≠1.

故答案是:a<且a≠1.考查了根的判別式.一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:(1)△>1?方程有兩個不相等的實數(shù)根;(2)△=1?方程有兩個相等的實數(shù)根;(3)△<1?方程沒有實數(shù)根.18、1.【分析】根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最小值即可.【詳解】解:∵y=1x2+1=1(x+0)2+1,

∴頂點坐標為(0,1).

∴該函數(shù)的最小值是1.故答案為:1.本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的最值,正確的理解題意是解題的關(guān)鍵.三、解答題(共78分)19、(1)2,4;(2)4,1【分析】(1)根據(jù)題目給的公式去計算最小值和m的取值;(2)先將函數(shù)寫成,對用上面的公式算出最小值,和取最小值時a的值,從而得到函數(shù)的最小值.【詳解】解:(1),當,即(舍負)時,取最小值4,故答案是:2,4;(2),,當,,,(舍去)時,取最小值6,則函數(shù)的最小值是1,故答案是:4,1.本題考查實數(shù)的運算,解題的關(guān)鍵是根據(jù)題目給的公式進行最值的計算.20、x1=10,x2=﹣1.【分析】用因式分解法即可求解.【詳解】解:x2﹣6x﹣10=0,(x﹣10)(x+1)=0,∴x﹣10=0或x+1=0,∴x1=10,x2=﹣1.本題考查一元二次方程的解法,解題的關(guān)鍵是掌握一元二次方程的解法,有直接開平方法、配方法、公式法、因式分解法.21、(1)-1;(2)路線L的解析式為或【解析】試題分析:(1)令直線y=mx+1中x=0,則y=1,所以該直線與y軸的交點為(0,1),將(0,1)代入拋物線y=x2-2x+n中,得n=1,可求出拋物線的解析式為y=x2-2x+1=(x-1)2,所以拋物線的頂點坐標為(1,0).將點(1,0)代入到直線y=mx+1中,得0=m+1,解得m=-1,(2)將y=2x-4和y=聯(lián)立方程可得2x-4=,即2x2-4x-6=0,解得x1=-1,x2=3,所以該“路線”L的頂點坐標為(-1,-6)或(3,2),令“帶線”l:y=2x-4中x=0,則y=-4,所以“路線”L的圖象過點(0,-4),設(shè)該“路線”L的解析式為y=m(x+1)2-6或y=n(x-3)2+2,由題意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得m=2,n=,所以此“路線”L的解析式為y=2(x+1)2-6或y=(x-3)2+2.試題解析:(1)令直線y=mx+1中x=0,則y=1,即該直線與y軸的交點為(0,1),將(0,1)代入拋物線y=x2-2x+n中,得n=1,∴拋物線的解析式為y=x2-2x+1=(x-1)2,∴拋物線的頂點坐標為(1,0).將點(1,0)代入到直線y=mx+1中,得0=m+1,解得m=-1,(2)將y=2x-4代入到y(tǒng)=中,得2x-4=,即2x2-4x-6=0,解得x1=-1,x2=3,∴該“路線”L的頂點坐標為(-1,-6)或(3,2),令“帶線”l:y=2x-4中x=0,則y=-4,∴“路線”L的圖象過點(0,-4),設(shè)該“路線”L的解析式為y=m(x+1)2-6或y=n(x-3)2+2,由題意得:-4=m(0+1)2-6或-4=n(0-3)2+2,解得m=2,n=,∴此“路線”L的解析式為y=2(x+1)2-6或y=(x-3)2+2.22、(1)見解析;(2)【分析】(1)連接,根據(jù)等腰三角形的性質(zhì)得到,求得,根據(jù)三角形的內(nèi)角和得到,于是得到是的切線;(2)連接,推出是等邊三角形,得到,求得,得到,于是得到結(jié)論.【詳解】(1)證明:連接,∵,∴,∵,∴,∴,∴,∴是的切線;(2)解:連接,∵,∴是等邊三角形,∴,∴,∴,∴,∴的半徑.本題考查了切線的判定和性質(zhì),等腰三角形的性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.23、(1);(2)幾何體的體積是1.【分析】(1)化簡各項的三角函數(shù),再把各項相加;(2)原幾何體是正方體截掉一個底面邊長為1,高為4的長方體,由此可求幾何體的體積.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論