版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸測試模擬題目(比較難)及解析一、解答題1.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點(diǎn)O按每秒30°的速度按逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第____________秒時(shí),直線MN恰好與直線CD垂直.(直接寫出結(jié)果)2.己知:如圖①,直線直線,垂足為,點(diǎn)在射線上,點(diǎn)在射線上(、不與點(diǎn)重合),點(diǎn)在射線上且,過點(diǎn)作直線.點(diǎn)在點(diǎn)的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說明;(3)如圖③,若,點(diǎn)在射線上運(yùn)動(dòng),的平分線交的延長線于點(diǎn),在點(diǎn)運(yùn)動(dòng)過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.3.如圖,平分,平分,請判斷與的位置關(guān)系并說明理由;如圖,當(dāng)且與的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn),使,當(dāng)直角頂點(diǎn)點(diǎn)移動(dòng)時(shí),問與否存在確定的數(shù)量關(guān)系?并說明理由.如圖,為線段上一定點(diǎn),點(diǎn)為直線上一動(dòng)點(diǎn)且與的位置關(guān)系保持不變,①當(dāng)點(diǎn)在射線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.②當(dāng)點(diǎn)在射線的反向延長線上運(yùn)動(dòng)時(shí)(點(diǎn)除外),與有何數(shù)量關(guān)系?直接寫出猜想結(jié)論,不需說明理由.4.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長線上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).5.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.6.閱讀材料:如圖1,點(diǎn)是直線上一點(diǎn),上方的四邊形中,,延長,,探究與的數(shù)量關(guān)系,并證明.小白的想法是:“作(如圖2),通過推理可以得到,從而得出結(jié)論”.請按照小白的想法完成解答:拓展延伸:保留原題條件不變,平分,反向延長,交的平分線于點(diǎn)(如圖3),設(shè),請直接寫出的度數(shù)(用含的式子表示).7.(問題情境)蘇科版義務(wù)教育教科書數(shù)學(xué)七下第42頁有這樣的一個(gè)問題:(1)探究1:如圖1,在中,P是與的平分線和的交點(diǎn),通過分析發(fā)現(xiàn),理由如下:∵和分別是和的角平分線,∴,.∴.又∵在中,,∴∴(2)探究2:如圖2中,H是外角與外角的平分線和的交點(diǎn),若,則______.若,則與有怎樣的關(guān)系?請說明理由.(3)探究3:如圖3中,在中,P是與的平分線和的交點(diǎn),過點(diǎn)P作,交于點(diǎn)D.外角的平分線與的延長線交于點(diǎn)E,則根據(jù)探究1的結(jié)論,下列角中與相等的角是______;A.B.C.(4)探究4:如圖4中,H是外角與外角的平分線和的交點(diǎn),在探究3條件的基礎(chǔ)上,①試判斷與的位置關(guān)系,并說明理由;②在中,存在一個(gè)內(nèi)角等于的3倍,則的度數(shù)為______8.模型規(guī)律:如圖1,延長交于點(diǎn)D,則.因?yàn)榘妓倪呅涡嗡萍^,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用(1)直接應(yīng)用:①如圖2,,則__________;②如圖3,__________;(2)拓展應(yīng)用:①如圖4,、的2等分線(即角平分線)、交于點(diǎn),已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點(diǎn)從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點(diǎn)D,已知,則__________;④如圖7,、的角平分線、交于點(diǎn)D,則、、之同的數(shù)量關(guān)系為__________.9.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點(diǎn),直線l2分別交直線MN、GH于C、D兩點(diǎn),且直線l1、l2交于點(diǎn)E,點(diǎn)P是直線l2上不同于C、D、E點(diǎn)的動(dòng)點(diǎn).(1)如圖①,當(dāng)點(diǎn)P在線段CE上時(shí),請直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系:;(2)如圖②,當(dāng)點(diǎn)P在線段DE上時(shí),(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系還成立嗎?如果成立,請說明成立的理由;如果不成立,請寫出這三個(gè)角之間的數(shù)量關(guān)系,并說明理由.(3)如果點(diǎn)P在直線l2上且在C、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí),其他條件不變,請直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關(guān)系.10.(1)思考探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠ABC=70°,∠ACD=100°.求∠A和∠P的度數(shù).(2)類比探究:如圖,△ABC的內(nèi)角∠ABC的平分線與外角∠ACD的平分線相交于P點(diǎn),已知∠P=n°.求∠A的度數(shù)(用含n的式子表示).(3)拓展遷移:已知,在四邊形ABCD中,四邊形ABCD的內(nèi)角∠ABC與外角∠DCE的平分線所在直線相交于點(diǎn)P,∠P=n°,請畫出圖形;并探究出∠A+∠D的度數(shù)(用含n的式子表示).【參考答案】一、解答題1.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時(shí)的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時(shí),旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時(shí),直線MN恰好與直線CD垂直.【點(diǎn)睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點(diǎn)是第(3)小題,解題的關(guān)鍵是畫出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).2.(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因?yàn)椤鰾CD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點(diǎn)睛:本題主要考查垂線,角平分線和三角形面積,解題的關(guān)鍵是找準(zhǔn)相等的角求解.3.(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點(diǎn)睛:本題考查了平行線的性質(zhì),根據(jù)題意作出平行線是解答此題的關(guān)鍵.4.(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H解析:(1),證明見解析;(2)證明見解析;(3).【分析】(1)過E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進(jìn)而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進(jìn)而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點(diǎn)H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用三角形外角性質(zhì)進(jìn)行計(jì)算求解.解題時(shí)注意:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.5.(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過對的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.6.閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點(diǎn)作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)解析:閱讀材料:,見解析;拓展延伸:.【分析】(1)作,,,由平行線性質(zhì)可得,結(jié)合已知,可證,進(jìn)而得到,從而,,將代入可得.(2)過H點(diǎn)作HP∥MN,可得∠CHA=∠PHA+∠PHC,結(jié)合(1)的結(jié)論和CG平分∠ECD可得∠PHC=∠FCH=120°-,即可得.【詳解】解:【閱讀材料】作,,(如圖1).∵,∴.∴.∵,∴.∴.∴.∵,∴.∵,∴.∴,.∴.∵,∴.【拓展延伸】結(jié)論:.理由:如圖,作,過H點(diǎn)作HP∥MN,∴∠PHA=∠MAH=,由(1)得FC∥MN,∴FC∥HP,∴∠PHC=∠FCH,∵,CG平分∠ECD,∴∠ECG=20°+,∴∠FCH==180°-()-(20°+)=120°-∴∠CHA=∠PHA+∠PHC=+(120°-)=120°-即:.【點(diǎn)評】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.7.(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進(jìn)行計(jì)算,即可得到的度數(shù)以及與的解析:(2);;理由見解析;(3)B;(4)①,理由見解析;②45°或60°【分析】(2)由(1)中結(jié)論可得,依據(jù)角平分線的定義,即可得出和均為直角;再根據(jù)四邊形內(nèi)角和進(jìn)行計(jì)算,即可得到的度數(shù)以及與的關(guān)系;(3)由(1)中結(jié)論可得,再根據(jù)垂線的定義以及三角形外角性質(zhì),即可得出,進(jìn)而得到;(4)①根據(jù),即可得到,再根據(jù)角平分線的定義,即可得到,依據(jù),即可判定;②由①可得,即可得出,再根據(jù)在中一個(gè)內(nèi)角等于的倍,分三種情況討論,即可得出的度數(shù).【詳解】解:(2)由(1)可得,,∵是外角與外角的平分線和的交點(diǎn),是與的平分線和的交點(diǎn),∴,同理可得,∴四邊形中,,故答案為:;若,則與關(guān)系為:.理由:由(1)可得,,∵是外角與外角的平分線和的交點(diǎn),是與的平分線和的交點(diǎn),∴,同理可得,∴四邊形中,.(3)由(1)可得,,∵,平分,∴,,∵是的外角,∴,∴,故答案為:;(4)①.理由:∵,∴,∵,分別平分,,∴,,∴,∴,∴;②由①可得,∴,∵平分,平分,∴,∴,分三種情況:①若,則,解得(不合題意),②若,則,∴,解得,∴,由(2)可得,,即,∴;③若,則,∴,解得,∴,由(2)可得,,即,∴;綜上所述,的度數(shù)為或.故答案為:或.【點(diǎn)睛】本題屬于三角形綜合題,主要考查的是角平分線的定義,三角形外角性質(zhì),三角形內(nèi)角和定理以及平行線的判定的綜合運(yùn)用,熟記基本圖形中的結(jié)論,準(zhǔn)確識(shí)圖并靈活運(yùn)用基本結(jié)論是解題的關(guān)鍵.8.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計(jì)算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計(jì)算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入計(jì)算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入計(jì)算可得;②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入計(jì)算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)計(jì)算可得;④根據(jù)兩個(gè)凹四邊形ABOD和ABOC得到兩個(gè)等式,聯(lián)立可得結(jié)論.【詳解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-(∠ABO+∠ACO)=∠BOC-(∠BOC-∠A)=∠BOC-(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-(∠BOC-∠A)=120°-(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)=180°-(120°-44°)=142°;④∠BOD=∠BOC=∠B+∠D+∠BAC,∠BOC=∠B+∠C+∠BAC,聯(lián)立得:∠B-∠C+2∠D=0.【點(diǎn)睛】本題主要考查了新定義—箭頭四角形,利用了三角形外角的性質(zhì),還考查了角平分線的定義,圖形類規(guī)律,解題的關(guān)鍵是理解箭頭四角形,并能熟練運(yùn)用其性質(zhì).9.(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解析:(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點(diǎn)作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(3)根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】解:(1)如圖①,過P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案為:∠APB=∠NAP+∠HBP;(2)如圖②,過P點(diǎn)作PQ∥GH,∵M(jìn)N∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如備用圖,∵M(jìn)N∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案為:∠HBP=∠NAP+∠APB.【點(diǎn)睛】此題考查了平行公理的推論:平行于同一條直線的兩直線平行,以及平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ),熟記定理是解題的關(guān)鍵.10.(1)∠A=30°,∠P=15°;(2)∠A=2n°;(3)畫圖見解析;∠A+∠D=180°+2n°或180°﹣2n°.【分析】(1)根據(jù)三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中央廚房設(shè)備采購合同
- 登記框架協(xié)議
- 2025年城市空中交通管理系統(tǒng)可行性研究報(bào)告
- 2025年影視文化產(chǎn)業(yè)園區(qū)開發(fā)項(xiàng)目可行性研究報(bào)告
- 2025年城市綜合體商業(yè)運(yùn)營與管理項(xiàng)目可行性研究報(bào)告
- 交換留學(xué)協(xié)議書
- 美發(fā)租賃合同范本
- 電信供用電協(xié)議書
- 融資部融資專員面試題及答案
- 心理咨詢師助理考試題含答案
- XF-T 3004-2020 汽車加油加氣站消防安全管理
- 行為金融學(xué)課件
- 低空經(jīng)濟(jì)產(chǎn)業(yè)園建設(shè)項(xiàng)目可行性研究報(bào)告
- 中考數(shù)學(xué)講座中考數(shù)學(xué)解答技巧基礎(chǔ)復(fù)習(xí)課件
- 短視頻的拍攝與剪輯
- 單軸仿形銑床設(shè)計(jì)
- 全口義齒人工牙的選擇與排列 28-全口義齒人工牙的選擇與排列(本科終稿)
- 低壓電纜敷設(shè)方案設(shè)計(jì)
- 原發(fā)性肝癌病人的護(hù)理原發(fā)性肝癌病人的護(hù)理
- GB/T 7324-2010通用鋰基潤滑脂
- 新能源有限公司光伏電站現(xiàn)場應(yīng)急處置方案匯編
評論
0/150
提交評論