版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省姜堰市勵才實驗學校2026屆九年級數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在平面直角坐標系中,四邊形為菱形,,,,則對角線交點的坐標為()A. B. C. D.2.下列圖案中是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個3.如圖所示,某賓館大廳要鋪圓環(huán)形的地毯,工人師傅只測量了與小圓相切的大圓的弦AB的長,就計算出了圓環(huán)的面積,若測量得AB的長為20米,則圓環(huán)的面積為()A.10平方米 B.10π平方米 C.100平方米 D.100π平方米4.如圖,AB是半圓O的直徑,且AB=4cm,動點P從點O出發(fā),沿OA→→BO的路徑以每秒1cm的速度運動一周.設(shè)運動時間為t,s=OP2,則下列圖象能大致刻畫s與t的關(guān)系的是()A. B.C. D.5.在一個不透明的盒子中裝有a個除顏色外完全相同的球,這a個球中只有4個紅球.若每次將球充分攪勻后,任意摸出1個球記下顏色再放回盒子.通過大量重復(fù)試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在20%左右,則a的值大約為()A.16 B.20 C.24 D.286.如圖,點在上,,則的半徑為()A.3 B.6 C. D.127.在平面直角坐標系中,反比例函數(shù)的圖象經(jīng)過點(1,3),則的值可以為A. B. C. D.8.若函數(shù)與的圖象如圖所示,則函數(shù)的大致圖象為()A. B. C. D.9.下列事件中,必然發(fā)生的是()A.某射擊運動射擊一次,命中靶心 B.通常情況下,水加熱到100℃時沸騰C.擲一次骰子,向上的一面是6點 D.拋一枚硬幣,落地后正面朝上10.下列標志既是軸對稱圖形又是中心對稱圖形的是().A. B.C. D.二、填空題(每小題3分,共24分)11.三角形兩邊長分別是4和2,第三邊長是2x2﹣9x+4=0的一個根,則三角形的周長是_____.12.已知二次函數(shù)y=(x﹣2)2﹣3,當x<2時,y隨x的增大而_____(填“增大”或“減小”).13.已知反比例函數(shù)的圖象如圖所示,則_____
,在圖象的每一支上,隨的增大而_____.14.在△ABC中,∠C=90°,若AC=6,BC=8,則△ABC外接圓半徑為________;15.若兩個相似三角形的面積比為1∶4,則這兩個相似三角形的周長比是__________.16.如圖,一飛鏢游戲板由大小相等的小正方形格子構(gòu)成,向游戲板隨機投擲一枚飛鏢,擊中黑色區(qū)域的概率是_____.17.某盞路燈照射的空間可以看成如圖所示的圓錐,它的高AO=8米,母線AB=10米,則該圓錐的側(cè)面積是_____平方米(結(jié)果保留π).18.如圖,一下水管橫截面為圓形,直徑為,下雨前水面寬為,一場大雨過后,水面上升了,則水面寬為__________.三、解答題(共66分)19.(10分)一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:售價x(元/千克)…50607080…銷售量y(千克)…100908070…(1)求y與x的函數(shù)關(guān)系式;(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?20.(6分)在一個不透明的布袋中,有三個除顏色外其它均相同的小球,其中兩個黑色,一個紅色.(1)請用表格或樹狀圖求出:一次隨機取出2個小球,顏色不同的概率.(2)如果老師在布袋中加入若干個紅色小球.然后小明通過做實驗的方式猜測加入的小球數(shù),小明每次換出一個小球記錄下慎色并放回,實驗數(shù)據(jù)如下表:實驗次數(shù)1002003004005001000摸出紅球78147228304373752請你幫小明算出老師放入了多少個紅色小球.21.(6分)2019年12月27日,我國成功發(fā)射了“長征五號”遙三運載火箭.如圖,“長征五號”運載火箭從地面處垂直向上發(fā)射,當火箭到達處時,從位于地面處的雷達站測得此時仰角,當火箭繼續(xù)升空到達處時,從位于地面處的雷達站測得此時仰角,已知,.(1)求的長;(2)若“長征五號”運載火箭在處進行“程序轉(zhuǎn)彎”,且,求雷達站到其正上方點的距離.22.(8分)如圖,已知拋物線y=x2-x-3與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.(1)直接寫出A、D、C三點的坐標;(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;(3)設(shè)點C關(guān)于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.23.(8分)如圖正方形ABCD中,E是BC邊的中點,AE與BD相交于F點,△DEF的面積是1,求正方形ABCD的面積.24.(8分)如圖,在平面直角坐標系中A點的坐標為(8,y),AB⊥x軸于點B,sin∠OAB=,反比例函數(shù)y=的圖象的一支經(jīng)過AO的中點C,且與AB交于點D.(1)求反比例函數(shù)解析式;(2)若函數(shù)y=3x與y=的圖象的另一支交于點M,求三角形OMB與四邊形OCDB的面積的比.25.(10分)已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線解析式;(2)當點P運動到什么位置時,△PAB的面積最大?(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.26.(10分)已知拋物線與軸的兩個交點是點,(在的左側(cè)),與軸的交點是點.(1)求證:,兩點中必有一個點坐標是;(2)若拋物線的對稱軸是,求其解析式;(3)在(2)的條件下,拋物線上是否存在一點,使?如果存在,求出點的坐標;如果不存在,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】過點作軸于點,由直角三角形的性質(zhì)求出長和長即可.【詳解】解:過點作軸于點,∵四邊形為菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故選D.本題考查了菱形的性質(zhì)、勾股定理及含30°直角三角形的性質(zhì),正確作出輔助線是解題的關(guān)鍵.2、B【解析】根據(jù)中心對稱圖形的定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可得答案.【詳解】解:第一個不是中心對稱圖形;第二個是中心對稱圖形;第三個不是中心對稱圖形;第四個是中心對稱圖形;故中心對稱圖形的有2個.故選B.此題主要考查了中心對稱圖形,關(guān)鍵是找出對稱中心.3、D【解析】過O作OC⊥AB于C,連OA,根據(jù)垂徑定理得到AC=BC=10,再根據(jù)切線的性質(zhì)得到AB為小圓的切線,于是有圓環(huán)的面積=π?OA2-π?OC2=π(OA2-OC2)=π?AC2,即可圓環(huán)的面積.【詳解】過O作OC⊥AB于C,連OA,如圖,∴AC=BC,而AB=20,∴AC=10,∵AB與小圓相切,∴OC為小圓的半徑,∴圓環(huán)的面積=π?OA2-π?OC2=π(OA2-OC2)=π?AC2=100π(平方米).故選D.本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的?。部疾榱饲芯€的性質(zhì)定理以及勾股定理.4、C【解析】在半徑AO上運動時,s=OP1=t1;在弧BA上運動時,s=OP1=4;在BO上運動時,s=OP1=(4π+4-t)1,s也是t是二次函數(shù);即可得出答案.【詳解】解:利用圖象可得出:當點P在半徑AO上運動時,s=OP1=t1;在弧AB上運動時,s=OP1=4;在OB上運動時,s=OP1=(1π+4-t)1.結(jié)合圖像可知C選項正確故選:C.此題考查了動點問題的函數(shù)圖象,能夠結(jié)合圖形正確得出s與時間t之間的函數(shù)關(guān)系是解決問題的關(guān)鍵.5、B【分析】在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解.【詳解】根據(jù)題意知=20%,解得a=20,經(jīng)檢驗:a=20是原分式方程的解,故選B.本題考查利用頻率估計概率.大量反復(fù)試驗下頻率穩(wěn)定值即概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.6、B【分析】連接OB、OC,如圖,根據(jù)圓周角定理可得,進一步即可判斷△OCB是等邊三角形,進而可得答案.【詳解】解:連接OB、OC,如圖,則OB=OC,∵,∴,∴△OCB是等邊三角形,∴OB=BC=6.故選:B.本題考查了圓周角定理和等邊三角形的判定和性質(zhì),屬于基礎(chǔ)題型,熟練掌握上述性質(zhì)是解題關(guān)鍵.7、B【分析】把點(1,3)代入中即可求得k值.【詳解】解:把x=1,y=3代入中得,∴k=3.故選:B.本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,能理解把已知點的坐標代入解析式是解題關(guān)鍵.8、A【分析】首先根據(jù)二次函數(shù)及反比例函數(shù)的圖象確定k、b的符號,然后根據(jù)一次函數(shù)的性質(zhì)確定答案即可.【詳解】∵二次函數(shù)的圖象開口向上,對稱軸>0∴a>0,b<0,
又∵反比例函數(shù)的圖形位于二、四象限,∴-k<0,∴k>0
∴函數(shù)y=kx-b的大致圖象經(jīng)過一、二、三象限.故選:
A本題考查的是利用反比例函數(shù)和二次函數(shù)的圖象確定一次函數(shù)的系數(shù),然后根據(jù)一次函數(shù)的性質(zhì)確定其大致圖象,確定一次函數(shù)的系數(shù)是解決本題的關(guān)鍵.9、B【解析】A、某射擊運動射擊一次,命中靶心,隨機事件;B、通常加熱到100℃時,水沸騰,是必然事件.C、擲一次骰子,向上的一面是6點,隨機事件;D拋一枚硬幣,落地后正面朝上,隨機事件;故選B.10、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的定義解答.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是中心對稱圖形,不是軸對稱圖形;D、是軸對稱圖形,不是中心對稱圖形.故選:B.掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.二、填空題(每小題3分,共24分)11、1.【分析】先利用因式分解法求出方程的解,再由三角形的三邊關(guān)系確定出第三邊,最后求周長即可.【詳解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=或x=4,當x=時,+2<4,不能構(gòu)成三角形,舍去;則三角形周長為4+4+2=1.故答案為:1.本題主要考查了解一元二次方程,正確使用因式分解法解一元二次方程是解答本題的關(guān)鍵.12、減小【分析】根據(jù)題目的函數(shù)解析式和二次函數(shù)的性質(zhì),可以得到當x<2時,y隨x的增大如何變化,本題得以解決.【詳解】∵二次函數(shù)y=(x﹣2)2﹣3,∴拋物線開口向上,對稱軸為:x=2,∴當x>2時,y隨x的增大而增大,x<2時,y隨x的增大而減小,故答案為:減?。绢}考查二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.13、,增大.【解析】根據(jù)反比例函數(shù)的圖象所在的象限可以確定k的符號;根據(jù)圖象可以直接回答在圖象的每一支上,y隨x的增大而增大.【詳解】根據(jù)圖象知,該函數(shù)圖象經(jīng)過第二、四象限,故k<0;
由圖象可知,反比例函數(shù)y=在圖象的每一支上,y隨x的增大而增大.
故答案是:<;增大.本題考查了反比例函數(shù)的圖象.解題時,采用了“數(shù)形結(jié)合”的數(shù)學思想.14、5【分析】先確定外接圓的半徑是AB,圓心在AB的中點,再計算AB的長,由此求出外接圓的半徑為5.【詳解】∵在△ABC中,∠C=90°,∴△ABC外接圓直徑為斜邊AB、圓心是AB的中點,∵∠C=90°,AC=6,BC=8,∴,∴△ABC外接圓半徑為5.故答案為:5.此題考查勾股定理的運用、三角形外接圓的確定.根據(jù)圓周角定理,直角三角形的直角所對的邊為直徑,即可確定圓的位置及大小.15、【解析】試題分析:∵兩個相似三角形的面積比為1:4,∴這兩個相似三角形的相似比為1:1,∴這兩個相似三角形的周長比是1:1,故答案為1:1.考點:相似三角形的性質(zhì).16、【分析】利用黑色區(qū)域的面積除以游戲板的面積即可.【詳解】解:黑色區(qū)域的面積=3×3﹣×3×1﹣×2×2﹣×3×1=4,∴擊中黑色區(qū)域的概率==.故答案是:.本題考查了幾何概率:求概率時,已知和未知與幾何有關(guān)的就是幾何概率.計算方法是長度比,面積比,體積比等.17、【分析】根據(jù)勾股定理求得OB,再求得圓錐的底面周長即圓錐的側(cè)面弧長,根據(jù)扇形面積的計算方法S=lr,求得答案即可.【詳解】解:∵AO=8米,AB=10米,∴OB=6米,∴圓錐的底面周長=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案為60π.本題考查圓錐的側(cè)面積,掌握扇形面積的計算方法S=lr是解題的關(guān)鍵.18、1【分析】先根據(jù)勾股定理求出OE的長,再根據(jù)垂徑定理求出CF的長,即可得出結(jié)論.【詳解】解:如圖:作OE⊥AB于E,交CD于F,連接OA,OC∵AB=60cm,OE⊥AB,且直徑為100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案為:1.本題考查的是垂徑定理的應(yīng)用,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.三、解答題(共66分)19、(1)y與x的函數(shù)關(guān)系式為y=-x+150;(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為70元;(3)該產(chǎn)品每千克售價為85元時,批發(fā)商獲得的利潤w(元)最大,此時的最大利潤為1元.【分析】(1)根據(jù)圖表中的各數(shù)可得出y與x成一次函數(shù)關(guān)系,從而結(jié)合圖表的數(shù)可得出y與x的關(guān)系式;(2)根據(jù)想獲得4000元的利潤,列出方程求解即可;(3)根據(jù)批發(fā)商獲得的總利潤w(元)=售量×每件利潤可表示出w與x之間的函數(shù)表達式,再利用二次函數(shù)的最值可得出利潤最大值.【詳解】(1)設(shè)y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),根據(jù)題意得,解得,故y與x的函數(shù)關(guān)系式為y=-x+150;(2)根據(jù)題意得(-x+150)(x-20)=4000,解得x1=70,x2=100>90(不合題意,舍去).故該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為70元;(3)w與x的函數(shù)關(guān)系式為:w=(-x+150)(x-20)=-x2+170x-3000=-(x-85)2+1,∵-1<0,∴當x=85時,w值最大,w最大值是1.∴該產(chǎn)品每千克售價為85元時,批發(fā)商獲得的利潤w(元)最大,此時的最大利潤為1元.20、(1)P=;(2)加入了5個紅球【分析】(1)利用列表法表示出所有可能,進而得出結(jié)論即可;(2)根據(jù)概率列出相應(yīng)的方程,求解即可.【詳解】(1)列表如圖,黑1黑2紅黑1/(黑1,黑2)(黑1,紅)黑2(黑2,黑1)/(黑2,紅)紅(紅,黑1)(紅,黑2)/一共有6種等可能事件,其中顏色不同的等可能事件有4種,∴顏色不同的概率為P=(2)由圖表可得摸到紅球概率為設(shè)加入了x個紅球=解得x=5經(jīng)檢驗x=5是原方程的解答:加入了5個紅球。本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1)km;(2)【分析】(1)設(shè)為,根據(jù)題意可用含x的代數(shù)式依次表示出AM、AC、AN的長,然后在直角△CAN中利用解直角三角形的知識即可求出x的值,進而可得答案;(2)由(1)的結(jié)果可得CN的長,作,垂足為點,如圖,根據(jù)題意易得∠DCN和∠DNC的度數(shù),設(shè)HN=y,則可用y的代數(shù)式表示出CH,根據(jù)CH+HN=CN可得關(guān)于y的方程,解方程即可求出y的值,進一步即可求出結(jié)果.【詳解】解:(1)設(shè)為,∵,∴,則,在中,∵,AC=AB+BC=x+40,AN=AM+MN=x+120,∴,即,解得:,∴km;(2)作,垂足為點,如圖,由(1)可得,,∵,∴,∵,∴,∴CH=DH,∵,∴,設(shè)為,則,∴,解得:,∴.答:雷達站到其正上方點的距離為.本題以“長征五號”遙三運載火箭發(fā)射為背景,是解直角三角形的典型應(yīng)用題,主要考查了解直角三角形的知識,屬于??碱}型,正確添加輔助線構(gòu)造直角三角形、熟練掌握銳角三角函數(shù)的知識是解題關(guān)鍵.22、(1)A點坐標為(4,0),D點坐標為(-2,0),C點坐標為(0,-3);(2)或或;(3)在拋物線上存在一點P,使得以點A、B、C、P四點為頂點所構(gòu)成的四邊形為梯形;點P的坐標為(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A點和D點坐標;令x=0,求出y=-3,可確定C點坐標;(2)根據(jù)兩個同底三角形面積相等得出它們的高相等,即縱坐標絕對值相等,得出點M的縱坐標為:,分別代入函數(shù)解析式求解即可;(3)分BC為梯形的底邊和BC為梯形的腰兩種情況討論即可.【詳解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)過點C做軸的平行線,交拋物線與點,做點C關(guān)于軸的對稱點,過點做軸的平行線,交拋物線與點,如下圖所示:∵△MAD的面積與△CAD的面積相等,且它們是等底三角形∴點M的縱坐標絕對值跟點C的縱坐標絕對值相等∵點C的縱坐標絕對值為:∴點M的縱坐標絕對值為:∴點M的縱坐標為:當點M的縱坐標為時,則解得:或(即點C,舍去)∴點的坐標為:當點M的縱坐標為時,則解得:∴點的坐標為:,點的坐標為:∴點M的坐標為:或或;(3)存在,分兩種情況:①如圖,當BC為梯形的底邊時,點P與D重合時,四邊形ADCB是梯形,此時點P為(-2,0).②如圖,當BC為梯形的腰時,過點C作CP//AB,與拋物線交于點P,∵點C,B關(guān)于拋物線對稱,∴B(2,-3)設(shè)直線AB的解析式為,則,解得.∴直線AB的解析式為.∵CP//AB,∴可設(shè)直線CP的解析式為.∵點C在直線CP上,∴.∴直線CP的解析式為.聯(lián)立,解得,∴P(6,6).綜上所述,在拋物線上存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形,點P的坐標為(-2,0)或(6,6).考點:1.二次函數(shù)綜合題;2.待定系數(shù)法的應(yīng)用;3.曲線上點的坐標與方程的關(guān)系;4.軸對稱的應(yīng)用(最短線路問題);5.二次函數(shù)的性質(zhì);6.梯形存在性問題;7.分類思想的應(yīng)用.23、1【分析】根據(jù)正方形的性質(zhì)得到AD=BC,AD∥BC,根據(jù)相似三角形的性質(zhì)得到=2,于是得到答案.【詳解】解:∵四邊形ABCD是正方形,∴AD=BC,AD∥BC,∴△ADE∽△EBF,∴=,∵E是BC邊的中點,∴BC=AD=2BE,∴=2,∵△DEF的面積是1,∴△DBE的面積為,∵E是BC邊的中點,∴S△BCD=2S△BDE=3,∴正方形ABCD的面積=2S△BCD=2×3=1.本題考查了相似三角形的判定和性質(zhì),正方形的性質(zhì),三角形的面積的計算,正確的識別圖形是解題的關(guān)鍵.24、y=;【解析】試題分析:(1)先根據(jù)銳角三角函數(shù)的定義,求出OA的值,然后根據(jù)勾股定理求出AB的值,然后由C點是OA的中點,求出C點的坐標,然后將C的坐標代入反比例函數(shù)y=中,即可確定反比例函數(shù)解析式;(2)先將y=3x與y=聯(lián)立成方程組,求出點M的坐標,然后求出點D的坐標,然后連接BC,分別求出△OMB的面積,△OBC的面積,△BCD的面積,進而確定四邊形OCDB的面積,進而可求三角形OMB與四邊形OCDB的面積的比.試題解析:(1)∵A點的坐標為(8,y),∴OB=8,∵AB⊥x軸于點B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵點C是OA的中點,且在第一象限內(nèi),∴C(4,3),∵點C在反比例函數(shù)y=的圖象上,∴k=12,∴反比例函數(shù)解析式為:y=;(2)將y=3x與y=聯(lián)立成方程組,得:,解得:,,∵M是直線與雙曲線另一支的交點,∴M(﹣2,﹣6),∵點D在AB上,∴點D的橫坐標為8,∵點D在反比例函數(shù)y=的圖象上,∴點D的縱坐標為,∴D(8,),∴BD=,連接BC,如圖所示,∵S△MOB=?8?|﹣6|=24,S四邊形OCDB=S△OBC+S△BCD=?8?3+=15,∴.考點:反比例函數(shù)與一次函數(shù)的交點問題.25、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系數(shù)法求解;(2)過點P作PH⊥x軸于點H,交AB于點F,直線AB解析式為y=x+3,設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則F(t,t+3),則PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根據(jù)S△PAB=S△PAF+S△PBF寫出解析式,再求函數(shù)最大值;(3)設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3),PD=﹣t2﹣3t,由拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4,由對稱軸為直線x=﹣1,PE∥x軸交拋物線于點E,得yE=y(tǒng)P,即點E、P關(guān)于對稱軸對稱,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE為等腰直角三角形,∠DPE=90°,得PD=PE,再分情況討論:①當﹣3<t≤﹣1時,PE=﹣2﹣2t;②當﹣1<t<0時,PE=2+2t【詳解】解:(1)∵拋物線y=ax2+bx+3過點B(﹣3,0),C(1,0)∴解得:∴拋物線解析式為y=﹣x2﹣2x+3(2)過點P作PH⊥x軸于點H,交
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年人教版英語九年級下冊期中質(zhì)量檢測卷(附答案解析)
- 2026年歷史專業(yè)考研核心考點模擬試題集
- 2025廣東深圳大學未來地下城市研究院招聘研究助理1人備考題庫及一套答案詳解
- 進口銀行消防安全培訓方案
- 消防安全微改造方案
- 國家統(tǒng)計局企業(yè)一套表身份認證系統(tǒng)介紹和工作要求
- 水產(chǎn)養(yǎng)殖技術(shù)政策解讀
- 刑事審判庭業(yè)務(wù)培訓課件
- 娛樂文化行業(yè)演員藝人績效考核表
- 切片技術(shù)教學課件
- 加減乘除課件
- 我的家人初中寫人記事作文600字10篇
- 特氣系統(tǒng)安全操作規(guī)范方案
- 排水管道CCTV-QV檢測評估報告
- 勞務(wù)分包技術(shù)方案
- 第14章-智能傳感技術(shù)
- GB/T 11060.8-2020天然氣含硫化合物的測定第8部分:用紫外熒光光度法測定總硫含量
- DA/T 28-2018建設(shè)項目檔案管理規(guī)范
- 廣東省高考英語聽說考試評分標準課件
- 現(xiàn)代環(huán)境監(jiān)測技術(shù)課件
- 反應(yīng)器施工方案-
評論
0/150
提交評論