版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆河北保定滿城區(qū)龍門中學數(shù)學九年級第一學期期末復習檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,在中,點D,E分別為AB,AC邊上的點,且,CD、BE相較于點O,連接AO并延長交DE于點G,交BC邊于點F,則下列結論中一定正確的是A. B. C. D.2.如圖,內接于⊙,是⊙的直徑,,點是弧上一點,連接,則的度數(shù)是()A.50° B.45° C.40° D.35°3.在平面直角坐標系中,點P(1,﹣2)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P對應點的坐標為()A.(2,﹣4) B.(2,﹣4)或(﹣2,4)C.(,﹣1) D.(,﹣1)或(﹣,1)4.若點在拋物線上,則的值()A.2021 B.2020 C.2019 D.20185.在下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.等邊三角形 B.圓 C.等腰梯形 D.直角三角形6.如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為的線段的概率為()A. B. C. D.7.如圖,在?ABCD中,E是AB的中點,EC交BD于點F,則△BEF與△DCB的面積比為()A. B. C. D.8.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.139.如圖,在方格紙中,點A,B,C都在格點上,則tan∠ABC的值是()A.2 B. C. D.10.將二次函數(shù)y=x2的圖象沿y軸向上平移2個單位長度,再沿x軸向左平移3個單位長度,所得圖象對應的函數(shù)表達式為()A.y=(x+3)2+2 B.y=(x﹣3)2+2 C.y=(x+2)2+3 D.y=(x﹣2)2+311.如圖,分別是的邊上的點,且,相交于點,若,則的值為()A. B. C. D.12.已知(,),下列變形錯誤的是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖所示的拋物線形拱橋中,當拱頂離水面2m時,水面寬4m.如果以拱頂為原點建立直角坐標系,且橫軸平行于水面,那么拱橋線的解析式為_____.14.已知:如圖,△ABC的面積為16,點D、E分別是邊AB、AC的中點,則△ADE的面積為______.15.廣場上噴水池中的噴頭微露水面,噴出的水線呈一條拋物線,水線上水珠的高度(米)關于水珠與噴頭的水平距離(米)的函數(shù)解析式是.水珠可以達到的最大高度是________(米).16.關于x的方程x2﹣x﹣m=0有兩個不相等實根,則m的取值范圍是__________.17.方程(x﹣3)(x+2)=0的根是_____.18.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為_____.三、解答題(共78分)19.(8分)已知:如圖,△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點(不與B,C點重合),∠ADE=45°.(1)求證:△ABD∽△DCE;(2)設BD=x,AE=y(tǒng),求y關于x的函數(shù)關系式;(3)當△ADE是等腰三角形時,請直接寫出AE的長.20.(8分)如圖,已知AB是⊙O的直徑,點C在⊙O上,AD垂直于過點C的切線,垂足為D,且∠BAD=80°,求∠DAC的度數(shù).21.(8分)如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.(1)如圖1,求△BCD的面積;(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當△CDF的面積與△BEF的面積相等時,求點E和點P的坐標.22.(10分)如圖,點O是等邊三角形ABC內的一點,∠BOC=150°,將△BOC繞點C按順時針旋轉得到△ADC,連接OD,OA.(1)求∠ODC的度數(shù);(2)若OB=4,OC=5,求AO的長.23.(10分)如圖,拋物線交軸于兩點,交軸于點,點的坐標為,直線經(jīng)過點.(1)求拋物線的函數(shù)表達式;(2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標;(3)過點的直線交直線于點,連接當直線與直線的一個夾角等于的2倍時,請直接寫出點的坐標.24.(10分)如圖,在10×10正方形網(wǎng)格中,每個小正方形邊長均為1個單位.建立坐標系后,△ABC中點C坐標為(0,1).(1)把△ABC繞點C順時針旋轉90°后得到△A1B1C1,畫出△A1B1C1,并寫出A1坐標.(2)把△ABC以O為位似中心放大,使放大前后對應邊長為1:2,畫出放大后的△A2B2C2,并寫出A2坐標.25.(12分)如圖,利用的墻角修建一個梯形的儲料場,其中,并使,新建墻上預留一長為1米的門.如果新建墻總長為15米,那么怎樣修建才能使儲料場的面積最大?最大面積多少平方米?26.如圖,已知一次函數(shù)y1=﹣x+a與x軸、y軸分別交于點D、C兩點和反比例函數(shù)交于A、B兩點,且點A的坐標是(1,3),點B的坐標是(3,m)(1)求a,k,m的值;(2)求C、D兩點的坐標,并求△AOB的面積.
參考答案一、選擇題(每題4分,共48分)1、C【分析】由可得到∽,依據(jù)平行線分線段成比例定理和相似三角形的性質進行判斷即可.【詳解】解:A.∵,∴,故不正確;B.∵,∴,故不正確;C.∵,∴∽,∽,,.,故正確;D.∵,∴,故不正確;故選C.本題主要考查的是相似三角形的判定和性質,熟練掌握相似三角形的性質和判定定理是解題的關鍵.2、A【分析】根據(jù)直徑所對的圓周角是直角可知∠ABC=90°,計算出∠BAC的度數(shù),再根據(jù)同弧所對的圓周角相等即可得出∠D的度數(shù).【詳解】解:∵是⊙的直徑,∴∠ABC=90°,又∵,∴∠BAC=90°-40°=50°,又∵∠BAC與所對的弧相等,∴∠D=∠BAC=50°,故答案為A.本題考查了直徑所對的圓周角是直角、同弧所對圓周角相等等知識點,解題的關鍵是熟知直徑所對的圓周角是直角及同弧所對圓周角相等.3、B【分析】根據(jù)位似變換的性質計算即可.【詳解】點P(1,﹣2)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應點的坐標為(1×2,﹣2×2)或(1×(﹣2),﹣2×(﹣2)),即(2,﹣4)或(﹣2,4),故選:B.本題考查的是位似變換、坐標與圖形的性質,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.4、B【分析】將P點代入拋物線解析式得到等式,對等式進行適當變形即可.【詳解】解:將代入中得所以.故選:B.本題考查二次函數(shù)上點的坐標特征,等式的性質.能根據(jù)等式的性質進行適當變形是解決此題的關鍵.5、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念對各選項分析判斷即可.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、圓是軸對稱圖形,也是中心對稱圖形,故本選項正確;C、等腰梯形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;D、直角三角形不一定是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;故選B.本題考查了軸對稱圖形與中心對稱圖形,識別軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合,識別中心對稱圖形的關鍵是尋找對稱中心,旋轉180°后與原圖重合.6、B【分析】先求出連接兩點所得的所有線段總數(shù),再用列舉法求出取到長度為的線段條數(shù),由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為的線段的概率.【詳解】根據(jù)題意可得所有的線段有15條,長度為的線段有AE、AC、FD、FB、EC、BD共6條,則P(長度為的線段)=.故選:B本題考查概率的求法,是基礎題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.7、D【分析】根據(jù)平行四邊形的性質得出AB=CD,AB∥CD,根據(jù)相似三角形的判定得出△BEF∽△DCF,根據(jù)相似三角形的性質和三角形面積公式求出即可.【詳解】解:∵四邊形ABCD是平行四邊形,E為AB的中點,∴AB=DC=2BE,AB∥CD,∴△BEF∽△DCF,∴==,∴DF=2BF,=()2=,∴=,∴S△BEF=S△DCF,S△DCB=S△DCF,∴==,故選D.本題考查了相似三角形的性質和判定和平行四邊形的性質,能熟記相似三角形的性質是解此題的關鍵.8、A【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.9、A【分析】根據(jù)直角三角形解決問題即可.【詳解】解:作AE⊥BC,∵∠AEC=90°,AE=4,BE=2,∴tan∠ABC=,故選:A.本題主要考查了解直角三角形,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.10、A【分析】直接利用二次函數(shù)的平移規(guī)律,左加右減,上加下減,進而得出答案.【詳解】解:將二次函數(shù)y=x1的圖象沿y軸向上平移1個單位長度,得到:y=x1+1,再沿x軸向左平移3個單位長度得到:y=(x+3)1+1.故選:A.解決本題的關鍵是得到平移函數(shù)解析式的一般規(guī)律:上下平移,直接在函數(shù)解析式的后面上加,下減平移的單位;左右平移,比例系數(shù)不變,在自變量后左加右減平移的單位.11、C【分析】根據(jù)題意可證明,再利用相似三角形的性質,相似三角形面積的比等于相似比的平方,即可得出對應邊的比值.【詳解】解:∵∴∴根據(jù)相似三角形面積的比等于相似比的平方,可知對應邊的比為.故選:C.本題考查的知識點是相似三角形的性質,主要有①相似三角形周長的比等于相似比;②相似三角形面積的比等于相似比的平方;③相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.12、B【分析】根據(jù)兩內項之積等于兩外項之積對各項分析判斷即可得解.【詳解】解:由,得出,3b=4a,A.由等式性質可得:3b=4a,正確;B.由等式性質可得:4a=3b,錯誤;C.由等式性質可得:3b=4a,正確;D.由等式性質可得:4a=3b,正確.故答案為:B.本題考查的知識點是等式的性質,熟記等式性質兩內項之積等于兩外項之積是解題的關鍵.二、填空題(每題4分,共24分)13、y=x1【解析】根據(jù)題意以拱頂為原點建立直角坐標系,即可求出解析式.【詳解】如圖:以拱頂為原點建立直角坐標系,由題意得A(1,?1),C(0,?1),設拋物線的解析式為:y=ax1把A(1,?1)代入,得4a=?1,解得a=?,所以拋物線解析式為y=?x1.故答案為:y=?x1.本題考查了二次函數(shù)的應用,解決本題的關鍵是根據(jù)題意建立平面直角坐標系.14、4【分析】根據(jù)三角形中位線的性質可得DE//BC,,即可證明△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方即可得答案.【詳解】∵點D、E分別是邊AB、AC的中點,∴DE為△ABC的中位線,∴DE//BC,,∴△ADE∽△ABC,∴=,∵△ABC的面積為16,∴S△ADE=×16=4.故答案為:4本題考查三角形中位線的性質及相似三角形的判定與性質,三角形的中位線平行于第三邊,且等于第三邊的一半;熟練掌握相似三角形的面積比等于相似比的平方是解題關鍵.15、10【解析】將一般式轉化為頂點式,依據(jù)自變量的變化范圍求解即可.【詳解】解:,當x=2時,y有最大值10,故答案為:10.利用配方法將一般式轉化為頂點式,再利用頂點式去求解函數(shù)的最大值.16、m>﹣【分析】根據(jù)根的判別式,令△>0,即可計算出m的值.【詳解】∵關于x的方程x2﹣x﹣m=0有兩個不相等實根,∴△=1﹣4×1×(﹣m)=1+4m>0,解得m>﹣.故答案為﹣.本題考查了一元二次方程系數(shù)的問題,掌握根的判別式是解題的關鍵.17、x=3或x=﹣1.【解析】由乘法法則知,(x﹣3)(x+1)=0,則x-3=0或x+1=0,解這兩個一元一次方程可求出x的值.【詳解】∵(x﹣3)(x+1)=0,∴x-3=0或x+1=0,∴x=3或x=﹣1.故答案為:x=3或x=﹣1.本題考查了解一元二次方程因式分解法:就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了數(shù)學轉化思想.18、1+【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A、B、D的坐標,進而可得出OD、OA、OB,根據(jù)圓的性質可得出OM的長度,在Rt△COM中,利用勾股定理可求出CO的長度,再根據(jù)CD=CO+OD即可求出結論.【詳解】當x=0時,y=(x﹣1)2﹣4=﹣1,∴點D的坐標為(0,﹣1),∴OD=1;當y=0時,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴點A的坐標為(﹣1,0),點B的坐標為(0,1),∴AB=4,OA=1,OB=1.連接CM,則CM=AB=2,OM=1,如圖所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案為1+.先根據(jù)二次函數(shù)與一元二次方程的關系,勾股定理,熟練掌握二次函數(shù)與一元二次方程的關系是解答本題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)y=x2-x+1=(x-)2+;(3)AE的長為2-或.【分析】(1)根據(jù)等腰直角三角形的性質及三角形內角與外角的關系,易證△ABD∽△DCE.
(2)由△ABD∽△DCE,對應邊成比例及等腰直角三角形的性質可求出y與x的函數(shù)關系式;
(3)當△ADE是等腰三角形時,因為三角形的腰和底不明確,所以應分AD=DE,AE=DE,AD=AE三種情況討論求出滿足題意的AE的長即可.【詳解】(1)證明:
∵∠BAC=90°,AB=AC
∴∠B=∠C=∠ADE=45°
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE
∴∠BAD=∠CDE
∴△ABD∽△DCE;
(2)由(1)得△ABD∽△DCE,
∴=,
∵∠BAC=90°,AB=AC=1,
∴BC=,CD=-x,EC=1-y,
∴=,
∴y=x2-x+1=(x-)2+;
(3)當AD=DE時,△ABD≌△CDE,
∴BD=CE,
∴x=1-y,即x-x2=x,
∵x≠0,
∴等式左右兩邊同時除以x得:x=-1
∴AE=1-x=2-,
當AE=DE時,DE⊥AC,此時D是BC中點,E也是AC的中點,
所以,AE=;
當AD=AE時,∠DAE=90°,D與B重合,不合題意;
綜上,在AC上存在點E,使△ADE是等腰三角形,
AE的長為2-或.本題考查相似三角形的性質、等腰直角三角形的性質、等腰三角形的判定和性質、二次函數(shù)的性質等知識,解題的關鍵是學會構建二次函數(shù)解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.20、40°【解析】連接OC,根據(jù)切線的性質得到OC⊥CD,根據(jù)平行線的性質、等腰三角形的性質得到∠DAC=∠CAO,得到答案.【詳解】如圖:連接OC,∵CD是⊙O的切線,∴OC⊥CD,又∵AD⊥CD,∴OC∥AD,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠DAC=∠CAO=∠BAD=40°,本題考查了切線的性質,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.21、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分別求出點C,頂點D,點A,B的坐標,如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,證明△BCD是直角三角形,即可由三角形的面積公式求出其面積;(2)先求出直線BD的解析式,設P(a,a2﹣2a﹣3),用含a的代數(shù)式表示出直線PC的解析式,聯(lián)立兩解析式求出含a的代數(shù)式的點F的坐標,過點C作x軸的平行線,交BD于點H,則yH=﹣3,由△CDF與△BEF的面積相等,列出方程,求出a的值,即可寫出E,P的坐標.【詳解】(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3,∴C(0,﹣3),當x=﹣=1時,y=﹣4,∴頂點D(1,﹣4),當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC?BC=×3=3;(2)設直線BD的解析式為y=kx+b,將B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,設P(a,a2﹣2a﹣3),直線PC的解析式為y=mx﹣3,將P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,當y=0時,x=,∴E(,0),聯(lián)立,解得,,∴F(,),如圖2,過點C作x軸的平行線,交BD于點H,則yH=﹣3,∴H(,﹣3),∴S△CDF=CH?(yF﹣yD),S△BEF=BE?(﹣yF),∴當△CDF與△BEF的面積相等時,CH?(yF﹣yD)=BE?(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).此題主要考查二次函數(shù)與幾何綜合,解題的關鍵是熟知二次函數(shù)的圖像與性質、一次函數(shù)的性質及三角形面積的求解.22、(1)60°;(2)【分析】(1)根據(jù)旋轉的性質得到三角形ODC為等邊三角形即可求解;
(2)由旋轉的性質得:AD=OB=1,結合題意得到∠ADO=90°.則在Rt△AOD中,由勾股定理即可求得AO的長.【詳解】(1)由旋轉的性質得:CD=CO,∠ACD=∠BCO.∵∠ACB=∠ACO+∠OCB=60°,∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,∴△OCD為等邊三角形,∴∠ODC=60°.(2)由旋轉的性質得:AD=OB=1.∵△OCD為等邊三角形,∴OD=OC=2.∵∠BOC=120°,∠ODC=60°,∴∠ADO=90°.在Rt△AOD中,由勾股定理得:AO=.本題考查旋轉的性質、等邊三角形的性質和勾股定理,解題的關鍵是掌握旋轉的性質、等邊三角形的性質和勾股定理.23、(1);(2)當時,有最大值,最大值為,點坐標為;(3)點的坐標或.【分析】(1)利用點B的坐標,用待定系數(shù)法即可求出拋物線的函數(shù)表達式;(2)如圖1,過點P作軸,交BC于點H,設,H,求出的面積即可求解;(3)如圖2,作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于,交AC于E,利用等腰三角形的性質和三角形外角性質得到,再確定N(3,?2),AC的解析式為y=5x?5,E點坐標為,利用兩直線垂直的問題可設直線的解析式為,把E代入求出b,得到直線的解析式為,則解方程組得點的坐標;作點關于N點的對稱點,利用對稱性得到,設,根據(jù)中點坐標公式得到,然后求出x即可得到的坐標,從而得到滿足條件的點M的坐標.【詳解】(1)把代入得;(2)過點P作軸,交BC于點H,設,則點H的坐標為,∴,∴,∴當時,有最大值,最大值為,此時點坐標為.(3)作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于,交AC于E,∵,
∴,
∴,
∵△ANB為等腰直角三角形,
∴,
∴N(3,?2),
由可得AC的解析式為y=5x?5,E點坐標為,
設直線的解析式為,把E代入得,解得,
∴直線的解析式為,
解方程組得,則;
如圖2,在直線BC上作點關于N點的對稱點,則,設,
∵,
∴,
∴,
綜上所述,點M的坐標為或.本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省葫蘆島市2025-2026學年高二上學期1月期末考試歷史試卷(含答案)
- 湖南省炎德英才大聯(lián)考2025-2026學年高二上學期期末試卷語文試題(含答案)
- 飛行員招飛培訓課件
- 鋼結構疲勞設計技術要點
- 飛機結構技術
- 2026云南臨滄滄源佤族自治縣職業(yè)技術學校宿舍管理員招聘1人考試備考題庫及答案解析
- 飛機客艙安全
- 疫情-小區(qū)活動策劃方案(3篇)
- 飛機安全性科普
- 裝潢水路施工方案(3篇)
- 2026年年長租公寓市場分析
- 生態(tài)環(huán)境監(jiān)測數(shù)據(jù)分析報告
- 2025年下半年四川成都溫江興蓉西城市運營集團有限公司第二次招聘人力資源部副部長等崗位5人考試參考試題及答案解析
- 煤炭裝卸施工方案(3篇)
- 安徽省蚌埠市2024-2025學年高二上學期期末考試 物理 含解析
- 八年級歷史上冊小論文觀點及范文
- 重慶康德卷2025-2026學年高一數(shù)學第一學期期末達標檢測試題含解析
- 浙江省杭州市蕭山區(qū)2024-2025學年六年級上學期語文期末試卷(含答案)
- 設備隱患排查培訓
- 2025至2030磷酸二氫鈉行業(yè)產業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
- 國家事業(yè)單位招聘2025中國農業(yè)科學院植物保護研究所招聘12人筆試歷年參考題庫附帶答案詳解
評論
0/150
提交評論