版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆廣西欽州市欽北區(qū)九年級數(shù)學第一學期期末調研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.把方程化成的形式,則的值分別是()A.4,13 B.-4,19 C.-4,13 D.4,192.為了測量某沙漠地區(qū)的溫度變化情況,從某時刻開始記錄了12個小時的溫度,記時間為(單位:)溫度為(單位:).當時,與的函數(shù)關系是,則時該地區(qū)的最高溫度是()A. B. C. D.3.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:24.已知二次函數(shù)圖象的一部分如圖所示,給出以下結論:;當時,函數(shù)有最大值;方程的解是,;,其中結論錯誤的個數(shù)是A.1 B.2 C.3 D.45.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=()A.30° B.45° C.60° D.67.5°6.函數(shù)y=mx2+2x+1的圖像與x軸只有1個公共點,則常數(shù)m的值是()A.1 B.2 C.0,1 D.1,27.一副透明的三角板,如圖疊放,直角三角板的斜邊AB、CE相交于點D,則∠BDC的度數(shù)為()A.60° B.45° C.75° D.90°8.下面是“育”“才”“水”“井"四個字的甲骨文,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.9.若三角形的兩邊長分別是4和6,第三邊的長是方程x2-5x+6=0的一個根,則這個三角形的周長是()A.13 B.16 C.12或13 D.11或1610.關于x的方程有實數(shù)根,則k的取值范圍是()A. B.且 C. D.且二、填空題(每小題3分,共24分)11.已知一元二次方程的一個根為1,則__________.12.在Rt△ABC中,∠C=90,AB=4,BC=3,則sinA的值是______________.13.反比例函數(shù)的圖像的兩支曲線分別位于第二、四象限內,則應滿足的條件是_________.14.如圖,平面直角坐標系中,等腰的頂點分別在軸、軸的正半軸,軸,點在函數(shù)的圖象上.若則的值為_____.15.若兩個相似三角形的面積比是9:25,則對應邊上的中線的比為_________.16.如圖,在⊙O中,∠AOB=60°,則∠ACB=____度.17.將一枚標有數(shù)字1、2、3、4、5、6的均勻正方體骰子拋擲一次,則向上一面數(shù)字為奇數(shù)的概率等于_____.18.已知二次函數(shù)(),與的部分對應值如下表所示:-10123461-2-3-2下面有四個論斷:①拋物線()的頂點為;②;③關于的方程的解為,;④當時,的值為正,其中正確的有_______.三、解答題(共66分)19.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.20.(6分)同時拋擲3枚硬幣做游戲,其中1元硬幣1枚,5角硬幣兩枚.(1)求3枚硬幣同時正面朝上的概率.(2)小張、小王約定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和為1.5元,則小張獲得1分;若面值和為1元,則小王得1分.誰先得到10分,誰獲勝,請問這個游戲是否公平?并說明理由.21.(6分)在平面直角坐標系中,點A、B的坐標分別是(0,3)、(﹣4,0),(1)將△AOB繞點A逆時針旋轉90°得到△AEF,點O,B對應點分別是E,F(xiàn),請在圖中畫出△AEF,并寫出E、F的坐標;(2)以O點為位似中心,將△AEF作位似變換且縮小為原來的,在網格內畫出一個符合條件的△A1E1F1.22.(8分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.23.(8分)如圖,O為∠MBN角平分線上一點,⊙O與BN相切于點C,連結CO并延長交BM于點A,過點A作AD⊥BO于點D.(1)求證:AB為⊙O的切線;(2)若BC=6,tan∠ABC=,求AD的長.24.(8分)一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.(1)從袋中隨機摸出一個球,記錄其顏色,然后放回,攪勻,大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.2,求n的值;(2)若,小明兩次摸球(摸出一球后,不放回,再摸出一球),請用樹狀圖畫出小明摸球的所有結果,并求出兩次摸出不同顏色球的概率.25.(10分)一艘漁船在A處觀測到東北方向有一小島C,已知小島C周圍4.8海里范圍內是水產養(yǎng)殖場.漁船沿北偏東30°方向航行10海里到達B處,在B處測得小島C在北偏東60°方向,這時漁船改變航線向正東(即BD)方向航行,這艘漁船是否有進入養(yǎng)殖場的危險?26.(10分)九年級甲班和乙班各推選10名同學進行投籃比賽,按照比賽規(guī)則,每人各投了10個球;將兩班選手的進球數(shù)繪制成如下尚不完整的統(tǒng)計圖表:進球數(shù)/個1098743乙班人數(shù)/個112411平均成績中位數(shù)眾數(shù)甲班77c乙班ab7(1)表格中b=,c=并求a的值;(2)如果要從這兩個班中選出一個成績較為穩(wěn)定的班代表年級參加學校的投籃比賽,爭取奪得總進球數(shù)團體第一名,你認為應該選擇哪個班,請說明理由;如果要爭取個人進球數(shù)進入學校前三名,你認為應該選擇哪個班,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用,把左邊配成完全平方式,右邊化為常數(shù).【詳解】解:∵x2+8x-3=0,
∴x2+8x=3,
∴x2+8x+16=3+16,
∴(x+4)2=19,
∴m=4,n=19,
故選:D.配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.2、D【分析】利用配方法求最值.【詳解】解:∵a=-1<0∴當t=5時,y有最大值為36故選:D本題考查配方法求最值,掌握配方法的方法正確計算是本題的解題關鍵.3、B【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B4、A【解析】由拋物線開口方向得到a<1,根據拋物線的對稱軸為直線x==-1得b<1,由拋物線與y軸的交點位置得到c>1,則abc>1;觀察函數(shù)圖象得到x=-1時,函數(shù)有最大值;利用拋物線的對稱性可確定拋物線與x軸的另一個交點坐標為(-3,1),則當x=1或x=-3時,函數(shù)y的值等于1;觀察函數(shù)圖象得到x=2時,y<1,即4a+2b+c<1.【詳解】解:∵拋物線開口向下,∴a<1,∵拋物線的對稱軸為直線x==-1,∴b=2a<1,∵拋物線與y軸的交點在x軸上方,∴c>1,∴abc>1,所以①正確;∵拋物線開口向下,對稱軸為直線x=-1,∴當x=-1時,函數(shù)有最大值,所以②正確;∵拋物線與x軸的一個交點坐標為(1,1),而對稱軸為直線x=-1,∴拋物線與x軸的另一個交點坐標為(?3,1),∴當x=1或x=-3時,函數(shù)y的值都等于1,∴方程ax2+bx+c=1的解是:x1=1,x2=-3,所以③正確;∵x=2時,y<1,∴4a+2b+c<1,所以④錯誤.故選A.解此題的關鍵是能正確觀察圖形和靈活運用二次函數(shù)的性質,能根據圖象確定a、b、c的符號,并能根據圖象看出當x取特殊值時y的符號.5、D【分析】利用圓的切線的性質定理、等腰三角形的性質即可得出.【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故選:D.本題考查切線的性質定理,熟練掌握圓的切線的性質定理、等腰三角形的性質是解題的關鍵.6、C【解析】分兩種情況討論,當m=0和m≠0,函數(shù)分別為一次函數(shù)和二次函數(shù),由拋物線與x軸只有一個交點,得到根的判別式的值等于0,列式求解即可.【詳解】解:①若m=0,則函數(shù)y=2x+1,是一次函數(shù),與x軸只有一個交點;②若m≠0,則函數(shù)y=mx2+2x+1,是二次函數(shù).根據題意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故選:C.本題考查了一次函數(shù)的性質與拋物線與x軸的交點,拋物線與x軸的交點個數(shù)由根的判別式的值來確定.本題中函數(shù)可能是二次函數(shù),也可能是一次函數(shù),需要分類討論,這是本題的容易失分之處.7、C【分析】根據三角形的外角的性質計算,得到答案.【詳解】∵∠GFA=90°,∠A=45°,∴∠CGD=45°,∴∠BDC=∠CGD+∠C=75°,故選:B.本題考查的是三角形的外角性質,掌握三角形的一個外角等于和它不相鄰的兩個內角的和是解題的關鍵.8、C【解析】根據中心對稱圖形與軸對稱圖形的區(qū)別判斷即可,軸對稱圖形一定要沿某直線折疊后直線兩旁的部分互相重合,關鍵抓兩點:一是沿某直線折疊,二是兩部分互相重合;中心對稱圖形是圖形繞某一點旋轉180°后與原來的圖形重合,關鍵也是抓兩點:一是繞某一點旋轉,二是與原圖形重合.【詳解】解:A.不是中心對稱圖形也不是軸對稱圖形,不符合題意;B.是軸對稱圖形不是中心對稱圖形,不符合題意;C.是中心對稱圖形不是軸對稱圖形,符合題意;D.是軸對稱圖形也是中心對稱圖形,不符合題意;故答案為:C.本題考查的知識點是軸對稱圖形與中心對稱圖形的判斷,熟記二者的區(qū)別是解題的關鍵.9、A【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的兩個根,又由三角形的兩邊長分別是4和6,利用三角形的三邊關系,即可確定這個三角形的第三邊長,然后求得周長即可.【詳解】∵x2-5x+6=0,
∴(x-3)(x-2)=0,
解得:x1=3,x2=2,
∵三角形的兩邊長分別是4和6,
當x=3時,3+4>6,能組成三角形;
當x=2時,2+4=6,不能組成三角形.
∴這個三角形的第三邊長是3,
∴這個三角形的周長為:4+6+3=13.
故選A.此題考查了因式分解法解一元二次方程與三角形三邊關系的知識.此題難度不大,解題的關鍵是注意準確應用因式分解法解一元二次方程,注意分類討論思想的應用.10、C【分析】關于x的方程可以是一元一次方程,也可以是一元二次方程;當方程為一元一次方程時,k=1;是一元二次方程時,必須滿足下列條件:(1)二次項系數(shù)不為零;(2)在有實數(shù)根下必須滿足△=b2-4ac≥1.【詳解】當k=1時,方程為3x-1=1,有實數(shù)根,當k≠1時,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.綜上可知,當k≥-時,方程有實數(shù)根;故選C.本題考查了方程有實數(shù)根的含義,一元二次方程根的判別式的應用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.注意到分兩種情況討論是解題的關鍵.二、填空題(每小題3分,共24分)11、-4【分析】將x=1代入方程求解即可.【詳解】將x=1代入方程得4+a=0,解得a=-4,故答案為:-4.此題考查一元二次方程的解,使方程左右兩邊相等的未知數(shù)的值是方程的解,已知方程的解時將解代入方程求參數(shù)即可.12、【分析】畫出圖形,直接利用正弦函數(shù)的定義進行求解即可.【詳解】如圖:在Rt△ABC中:sinA=∵AB=4,BC=3∴sinA=故本題答案為:.本題考查了三角函數(shù)的定義,注意正弦,余弦,正切定義記清楚.13、【分析】根據反比例函數(shù)圖象所在的象限求得,然后得到的取值范圍即可.【詳解】∵反比例函數(shù)的圖象位于第二、四象限內,
∴,
則.故答案是:.本題考查了反比例函數(shù)的圖象的性質,重點是比例系數(shù)k的符號.14、4【分析】根據等腰三角形的性質和勾股定理求出AC的值,根據等面積法求出OA的值,OA和AC分別是點C的橫縱坐標,又點C在反比例函數(shù)圖像上,即可得出答案.【詳解】∵△ABC為等腰直角三角形,AB=2∴BC=2,解得:OA=∴點C的坐標為又點C在反比例函數(shù)圖像上∴故答案為4.本題考查的是反比例函數(shù),解題關鍵是根據等面積法求出點C的橫坐標.15、3:1【分析】根據相似三角形的性質:相似三角形對應邊上的中線之比等于相似比即可得出答案.【詳解】∵兩個相似三角形的面積比是9:21∴兩個相似三角形的相似比是3:1∴對應邊上的中線的比為3:1故答案為:3:1.本題主要考查相似三角形的性質,掌握相似三角形的性質是解題的關鍵.16、1.【詳解】解:同弧所對圓心角是圓周角的2倍,所以∠ACB=∠AOB=1°.∵∠AOB=60°∴∠ACB=1°故答案為:1.本題考查圓周角定理.17、.【分析】根據概率公式計算概率即可.【詳解】∵在正方體骰子中,朝上的數(shù)字共有6種,為奇數(shù)的情況有3種,分別是:1,3,5,∴朝上的數(shù)字為奇數(shù)的概率是=;故答案為:.此題考查的是求概率問題,掌握概率公式是解決此題的關鍵.18、①③④【分析】根據表格,即可判斷出拋物線的對稱軸,從而得到頂點坐標,即可判斷①;根據拋物線的對稱性即可判斷②;根據表格中函數(shù)值為-2時,對應的x的值,即可判斷③;根據二次函數(shù)的增減性即可判斷④.【詳解】解:①根據表格可知:拋物線()的對稱軸為x=2,∴拋物線()的頂點為,故①正確;②根據拋物線的對稱性可知:當x=4和x=0時,對應的函數(shù)值相同,∴m=1,故②錯誤;③由表格可知:對于二次函數(shù),當y=-2時,對應的x的值為1或3∴關于的方程的解為,,故③正確;④由表格可知:當x<2時,y隨x的增大而減小∵,拋物線過(0,1)∴當時,>1>0∴當時,的值為正,故④正確.故答案為:①③④.此題考查的是二次函數(shù)的圖象及性質,掌握二次函數(shù)的對稱性、頂點坐標與最值、二次函數(shù)與一元二次方程的關系和二次函數(shù)的增減性是解決此題的關鍵.三、解答題(共66分)19、(1);(2).【解析】(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據概率的意義解答即可;(2)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1);(2)公平,見解析【分析】(1)用列表法或樹狀圖法表示出所有可能出現(xiàn)的結果,進而求出3枚硬幣同時正面朝上的概率.(2)求出小張獲得1分;小王得1分的概率,再判斷游戲的公平性.【詳解】解:(1)用樹狀圖表示所有可能出現(xiàn)的情況如下:∴P(3枚硬幣同時正面朝上)=;(2)公平,所有面值出現(xiàn)的情況如圖所示:∵P(小張獲得1分),P(小王得1分),∴P(小張獲得1分)=P(小王得1分),因此對于他們來說是公平的.本題考查了樹狀圖和概率計算公式,解決本題的關鍵是正確理解題意,熟練掌握樹狀圖的畫法和概率的計算公式.21、(1)E(3,3),F(xiàn)(3,0);(2)見解析.【解析】分析:(1)利用網格特點和旋轉的性質,畫出點O,B對應點E,F(xiàn),從而得到△AEF,然后寫出E、F的坐標;(2)分別連接OE、OF,然后分別去OA、OE、OF的三等份點得到A1、E1、F1,從而得到△A1E1F1.詳解:(1)如圖,△AEF為所作,E(3,3),F(xiàn)(3,0);(2)如圖,△A1E1F1為所作.點睛:畫位似圖形的一般步驟為:先確定位似中心;再分別連接并延長位似中心和能代表原圖的關鍵點;接著根據位似比,確定能代表所作的位似圖形的關鍵點;然后順次連接上述各點,得到放大或縮小的圖形.22、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】(1)根據項目B的人數(shù)以及百分比,即可得到這次調查的市民人數(shù),據此可得項目A,C的百分比;(2)根據對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖;(3)根據全市總人數(shù)乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數(shù).【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.23、(1)見解析;(2)AD=2.【分析】(1)作OE⊥AB,先由∠AOD=∠BAD求得∠ABD=∠OAD,再由∠BCO=∠D=90°及∠BOC=∠AOD求得∠OBC=∠OAD=∠ABD,最后證△BOC≌△BOE得OE=OC,依據切線的判定可得;(2)先求得∠EOA=∠ABC,在Rt△ABC中求得AC=8,AB=10,由切線長定理知BE=BC=6,AE=4,OE=3,繼而得BO=3,根據相似三角形的性質即可得出結論.【詳解】解:(1)過點O作OE⊥AB于點E,∵O為∠MBN角平分線上一點,∴∠ABD=∠CBD,又∵BC為⊙O的切線,∴AC⊥BC,∵AD⊥BO于點D,∴∠D=90°,∴∠BCO=∠D=90°,∵∠BOC=∠AOD,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,∴∠OBC=∠OAD=∠ABD,在△BOC和△BOE中,∵,∴△BOC≌△BOE(AAS),∴OE=OC,∵OE⊥AB,∴AB是⊙O的切線;(2)∵∠ABC+∠BAC=90°,∠EOA+∠BAC=90°,∴∠EOA=∠ABC,∵tan∠ABC=、BC=6,∴AC=BC?tan∠ABC=8,則AB=10,由(1)知BE=BC=6,∴AE=4,∵tan∠EOA=tan∠ABC=,∴,∴OE=3,OB==3,∵∠ABD=∠OBC,∠D=∠ACB=90°,∴△ABD∽△OBC,∴,即,∴AD=2.故答案為:AD=2.本題主要考查了切線的判定與性質.解題的關鍵是掌握切線的判定,切線長定理,全等與相似三角形的判定與性質及解直角三角形的應用.24、(1);(2)【分析】(1)利用頻率估計概率,則摸到綠球的概率為0.2,然后利用概率公式列方程即可;(2)畫出樹狀圖,然后根據概率公式求概率即可.【詳解】解:(1)∵經過大量實驗,摸到綠球的頻率穩(wěn)定于0.2,∴摸到綠球的概率為0.2∴解得:,經檢驗是原方程的解.(2)樹狀圖如下圖所示:由樹狀圖可知:共有12種等可能的結果,其中兩次摸出不同顏色球的結果共有10種,故兩次摸出不同顏色球的概率為:此題考查的是利用頻率估計概率、畫樹狀圖及概率公式,掌握畫樹狀圖分析結果和利用概率公式求概率是解決此題的關鍵.25、漁船沒有進入養(yǎng)殖場的危險.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 考試題解析質量數(shù)據分析應用案例分析
- 深度解析(2026)《GBT 19275-2003材料在特定微生物作用下潛在生物分解和崩解能力的評價》
- 風險管理與內部控制考試題庫
- 通信行業(yè)人力資源部工作手冊及面試題集
- 獨居老人術后焦慮抑郁干預方案
- 深度解析(2026)《GBT 18758-2002防偽核技術產品通 用技術條件》(2026年)深度解析
- 軟件測試崗位招聘面試技巧全解
- 深度解析(2026)《GBT 18916.27-2017取水定額 第27部分:尿素》
- 圓刻線機項目可行性分析報告范文
- 深度解析(2026)《GBT 18769-2003大宗商品電子交易規(guī)范》
- 2024學年安徽省江南十校高一上學期12月聯(lián)考物理試題及答案
- 六章 幾何圖形初步 專題一-線段的計算 教學設計 2024--2025學年人教版數(shù)學七年級上冊
- 2GW高效N型Topcon電池智能制造項目可行性研究報告模板-立項拿地
- 鄉(xiāng)村振興戰(zhàn)略的理論與實踐智慧樹知到期末考試答案章節(jié)答案2024年華中師范大學
- 金屬硬度轉換表【HLD,HRC,HRB,HV,HB,HSD】
- 建材有限公司砂石卸車作業(yè)安全風險分級管控清單
- 中石化華北分公司鉆井定額使用說明
- 礦山壓力與巖層控制智慧樹知到答案章節(jié)測試2023年湖南科技大學
- 機加工車間主任年終總結3篇
- WB/T 1119-2022數(shù)字化倉庫評估規(guī)范
- GB/T 5125-1985有色金屬沖杯試驗方法
評論
0/150
提交評論