版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆黑龍江省大慶市第十九中學九年級數(shù)學第一學期期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,△ABC是⊙O的內(nèi)接三角形,∠A=55°,則∠OCB為()A.35° B.45° C.55° D.65°2.關(guān)于的一元二次方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.不能確定3.已知關(guān)于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數(shù)根B.方程有兩個不相等的實數(shù)根C.沒有實數(shù)根D.無法確定4.下列方程屬于一元二次方程的是()A. B.C. D.5.下列圖形中,成中心對稱圖形的是()A. B. C. D.6.方程的根是()A.5和 B.2和 C.8和 D.3和7.如圖,方格紙中4個小正方形的邊長均為2,則圖中陰影部分三個小扇形的面積和為()A. B. C. D.8.如圖,AE是四邊形ABCD外接圓⊙O的直徑,AD=CD,∠B=50°,則∠DAE的度數(shù)為()A.70° B.65° C.60° D.55°9.如圖,為的直徑,點是弧的中點,過點作于點,延長交于點,若,,則的直徑長為()A.10 B.13 C.15 D.1.10.如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉(zhuǎn)到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉(zhuǎn)角等于()A.55° B.70° C.125° D.145°11.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,若∠BAC=20°,則∠ADC的度數(shù)是()A.90° B.100° C.110° D.130°12.如果某人沿坡度為的斜坡前進10m,那么他所在的位置比原來的位置升高了()A.6m B.8m C.10m D.12m二、填空題(每題4分,共24分)13.如表記錄了一名球員在罰球線上投籃的結(jié)果.那么,這名球員投籃一次,投中的概率約為______(精確到0.1).投籃次數(shù)(n)50100150200250300500投中次數(shù)(m)286078104123152251投中頻率(m/n)0.560.600.520.520.490.510.5014.一個口袋中放有除顏色外,形狀大小都相同的黑白兩種球,黑球6個,白球10個.現(xiàn)在往袋中放入m個白球和4個黑球,使得摸到白球的概率為,則m=__.15.將拋物向右平移個單位,得到新的解析式為___________.16.某游樂場新推出一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度,其中斜坡軌道BC的坡度為,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面內(nèi))則垂直升降電梯AB的高度約為__________米.(精確到0.1米,參考數(shù)據(jù):)17.如圖,量角器外沿上有A、B兩點,它們的讀數(shù)分別是75°、45°,則∠1的度數(shù)為_____.18.設(shè),,,設(shè),則S=________________(用含有n的代數(shù)式表示,其中n為正整數(shù)).三、解答題(共78分)19.(8分)某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:甲1061068乙79789經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.(1)求乙進球的平均數(shù)和方差;(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應選誰?為什么?20.(8分)一位美術(shù)老師在課堂上進行立體模型素描教學時,把由圓錐與圓柱組成的幾何體(如圖所示,圓錐在圓柱上底面正中間放置)擺在講桌上,請你在指定的方框內(nèi)分別畫出這個幾何體的三視圖(從正面、左面、上面看得到的視圖).21.(8分)如圖1,過原點的拋物線與軸交于另一點,拋物線頂點的坐標為,其對稱軸交軸于點.(1)求拋物線的解析式;(2)如圖2,點為拋物線上位于第一象限內(nèi)且在對稱軸右側(cè)的一個動點,求使面積最大時點的坐標;(3)在對稱軸上是否存在點,使得點關(guān)于直線的對稱點滿足以點、、、為頂點的四邊形為菱形.若存在,請求出點的坐標;若不存在,請說明理由.22.(10分)如圖,是的直徑,點在上,平分,是的切線,與相交于點,與相交于點,連接.(1)求證:;(2)若,,求的長.23.(10分)如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG(1)判斷CG與⊙O的位置關(guān)系,并說明理由;(2)求證:2OB2=BC?BF;(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.24.(10分)如圖所示,在平面直角坐標系中,頂點為(4,﹣1)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側(cè)),已知A點坐標為(0,3).(1)求此拋物線的解析式;(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C有怎樣的位置關(guān)系,并給出證明.25.(12分)某校九年級數(shù)學興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數(shù)據(jù):如圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)2米.試求該校地下停車場的高度AC及限高CD(結(jié)果精確到0.1米,≈1.732).26.如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
參考答案一、選擇題(每題4分,共48分)1、A【分析】首先根據(jù)圓周角定理求得∠BOC,然后根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì)即可求得∠OCB.【詳解】解:∵∠A=55°,∴∠BOC=55°×2=110°,∵OB=OC,∴∠OCB=∠OBC=(180°-∠BOC)=35°,故答案為A.本題主要考查了圓周角定理、等腰三角形的性質(zhì)以及三角形的內(nèi)角和定理,掌握并靈活利用相關(guān)性質(zhì)定理是解答本題的關(guān)鍵.2、A【分析】根據(jù)根的判別式即可求解判斷.【詳解】∵△=b2-4ac=m2+4>0,故方程有兩個不相等的實數(shù)根,故選A.此題主要考查一元二次方程根的判別式,解題的關(guān)鍵是熟知判別式的性質(zhì).3、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數(shù)根.故答案選B.考點:一元二次方程根的判別式.4、A【解析】本題根據(jù)一元二次方程的定義求解.一元二次方程必須滿足兩個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為1.【詳解】解:A、該方程符合一元二次方程的定義,符合題意;B、該方程屬于二元二次方程,不符合題意;C、當a=1時,該方程不是一元二次方程,不符合題意;D、該方程不是整式方程,不是一元二次方程,不符合題意.故選:A.本題利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特別要注意a≠1的條件.這是在做題過程中容易忽視的知識點.5、B【解析】根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形;B.是中心對稱圖形;C.不是中心對稱圖形;D.不是中心對稱圖形.故答案選:B.本題考查了中心對稱圖形,解題的關(guān)鍵是尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.6、C【分析】利用直接開平方法解方程即可得答案.【詳解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故選:C.本題考查解一元二次方程,解一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當?shù)姆椒ㄊ墙忸}關(guān)鍵.7、D【分析】根據(jù)直角三角形的兩銳角互余求出∠1+∠2=90°,再根據(jù)正方形的對角線平分一組對角求出∠3=45°,然后根據(jù)扇形面積公式列式計算即可得解.【詳解】解:由圖可知,∠1+∠2=90°,∠3=45°,
∵正方形的邊長均為2,
∴陰影部分的面積=.
故選:D.本題考查了中心對稱,觀察圖形,根據(jù)正方形的性質(zhì)與直角三角形的性質(zhì)求出陰影部分的圓心角是解題的關(guān)鍵.8、B【分析】連接OC、OD,利用圓心角、弧、弦的關(guān)系以及圓周角定理求得∠AOD=50°,然后根據(jù)的等腰三角形的性質(zhì)以及三角形內(nèi)角和定理即可求得∠DAE=65°.【詳解】解:連接OC、OD,∵AD=CD,∴,∴∠AOD=∠COD,∵∠AOC=2∠B=2×50°=100°,∴AOD=50°,∵OA=OD,∴∠DAO=∠ADO=,即∠DAE=65°,故選:B.本題考查了圓中弦,弧,圓心角之間的關(guān)系,圓周角定理和三角形內(nèi)角和,解決本題的關(guān)鍵是正確理解題意,能夠熟練掌握圓心角,弧,弦之間的關(guān)系.9、C【分析】連接OD交AC于點G,根據(jù)垂徑定理以及弦、弧之間的關(guān)系先得出DF=AC,再由垂徑定理及推論得出DE的長以及OD⊥AC,最后在Rt△DOE中,根據(jù)勾股定理列方程求得半徑r,從而求出結(jié)果.【詳解】解:連接OD交AC于點G,∵AB⊥DF,∴,DE=EF.又點是弧的中點,∴,OD⊥AC,∴,∴AC=DF=12,∴DE=2.設(shè)的半徑為r,∴OE=AO-AE=r-3,在Rt△ODE中,根據(jù)勾股定理得,OE2+DE2=OD2,∴(r-3)2+22=r2,解得r=.∴的直徑為3.故選:C.本題主要考查垂徑定理及其推論,弧、弦之間的關(guān)系以及勾股定理,解題的關(guān)鍵是通過作輔助線構(gòu)造直角三角形,是中考??碱}型.10、C【解析】試題分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵點C、A、B1在同一條直線上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋轉(zhuǎn)角等于125°.故選C.11、C【解析】根據(jù)三角形內(nèi)角和定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵AB是直徑,
∴∠ACB=90°,
∵∠BAC=20°,
∴∠B=90°-20°=70°,
∵∠ADC+∠B=180°,
∴∠ADC=110°,
故選C.本題考查圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.12、A【解析】設(shè)斜坡的鉛直高度為3x,水平距離為4x,然后根據(jù)勾股定理求解即可.【詳解】設(shè)斜坡的鉛直高度為3x,水平距離為4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故選A.此題主要考查坡度坡角及勾股定理的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關(guān)系是.二、填空題(每題4分,共24分)13、0.1【解析】利用頻率的計算公式進行計算即可.【詳解】解:由題意得,這名球員投籃的次數(shù)為1110次,投中的次數(shù)為796,故這名球員投籃一次,投中的概率約為:≈0.1.故答案為0.1.本題考查利用頻率估計概率,難度不大.14、1【分析】根據(jù)概率公式列出方程,即可求出答案.【詳解】解:由題意得,解得m=1,經(jīng)檢驗m=1是原分式方程的根,故答案為1.本題主要考查了概率公式,根據(jù)概率公式列出方程是解題的關(guān)鍵.15、y=2(x-3)2+1【分析】利用拋物線的頂點坐標為(0,1),利用點平移的坐標變換規(guī)律得到平移后得到對應點的坐標為(3,1),然后根據(jù)頂點式寫出新拋物線的解析式.【詳解】解:∵
,
∴拋物線
的頂點坐標為
(0,1),把點
(0,1)
向右平移
3
個單位后得到對應點的坐標為
(3,1)
,
∴新拋物線的解析式為y=2(x-3)2+1.
故答案為y=2(x-3)2+1.本題考查二次函數(shù)圖象與幾何變換,配方法,關(guān)鍵是先利用配方法得到拋物線的頂點坐標.16、11.2【分析】延長AB和DC相交于點E,根據(jù)勾股定理,可得CE,BE的長,根據(jù)正切函數(shù),可得AE的長,再根據(jù)線段的和差,可得答案.【詳解】解:如圖,延長AB和DC相交于點E,
由斜坡軌道BC的坡度為i=1:1,得
BE:CE=1:1.
設(shè)BE=x米,CE=1x米,
在Rt△BCE中,由勾股定理,得
BE1+CE1=BC1,
即x1+(1x)1=(11)1,
解得x=11,
即BE=11米,CE=12米,
∴DE=DC+CE=8+12=31(米),
由tan36°≈0.73,得tanD=≈0.73,
∴AE≈0.73×31=13.36(米).
∴AB=AE-BE=13.36-11=11.36≈11.2(米).
故答案為:11.2.本題考查了解直角三角形的應用,作出輔助線構(gòu)造直角三角形,利用勾股定理得出CE,BE的長度是解題關(guān)鍵.17、15°【分析】根據(jù)圓周角和圓心角的關(guān)系解答即可.【詳解】解:由圖可知,∠AOB=75°﹣45°=30°,根據(jù)同弧所對的圓周角等于它所對圓心角的一半可知,∠1=∠AOB=×30°=15°.故答案為15°本題考查了圓周角定理,熟練掌握圓周角定理是解題的關(guān)鍵.18、【分析】先根據(jù)題目中提供的三個式子,分別計算的值,用含n的式子表示其規(guī)律,再計算S的值即可.【詳解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案為:本題為規(guī)律探究問題,難度較大,根據(jù)提供的式子發(fā)現(xiàn)規(guī)律,并表示規(guī)律是解題的關(guān)鍵,同時要注意對于式子的理解.三、解答題(共78分)19、(1)乙平均數(shù)為8,方差為0.8;(2)乙.【分析】(1)根據(jù)平均數(shù)、方差的計算公式計算即可;(2)根據(jù)平均數(shù)相同時,方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進行解答.【詳解】(1)乙進球的平均數(shù)為:(7+9+7+8+9)÷5=8,乙進球的方差為:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均數(shù)相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波動較小,成績更穩(wěn)定,∴應選乙去參加定點投籃比賽.本題考查了方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.也考查了平均數(shù).20、見解析【分析】認真觀察實物,可得這個幾何體的主視圖和左視圖都為長方形上面一個等腰三角形,俯視圖為兩個同心圓(中間有圓心).【詳解】解:三視圖如圖所示:本題考查簡單組合體的三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.21、(1);(2);(3)點的坐標為或【分析】(1)設(shè)出拋物線的頂點式,將頂點C的坐標和原點坐標代入即可;(2)先求出點A的坐標,再利用待定系數(shù)法求出AC的解析式,過點作軸交于點,設(shè),則,然后利用“鉛垂高,水平寬”即可求出面積與m的關(guān)系式,利用二次函數(shù)求最值,即可求出此時點D的坐標;(3)先證出為等邊三角形,然后根據(jù)P點的位置和菱形的頂點順序分類討論:①當點與點重合時,易證:四邊形是菱形,即可求出此時點P的坐標;②作點關(guān)于軸的對稱點,當點與點重合時,易證:四邊形是菱形,先求出,再根據(jù)銳角三角函數(shù)即可求出BP,從而求出此時點P的坐標.【詳解】(1)解:設(shè)拋物線解析式為,∵頂點∴又∵圖象過原點∴解出:∴即(2)令,即,解出:或∴設(shè)直線AC的解析式為y=kx+b將點,的坐標代入,可得解得:∴過點作軸交于點,設(shè),則∴∴∴當時,有最大值當時,∴(3)∵,,∴∴∴為等邊三角形①當點與點重合時,∴四邊形是菱形∴②作點關(guān)于軸的對稱點,當點與點重合時,∴四邊形是菱形∴點是的角平分線與對稱軸的交點,∴,∵,.在Rt△OBP中,∴綜上所述,點的坐標為或此題考查的是二次函數(shù)與圖形的綜合大題,掌握用待定系數(shù)法求二次函數(shù)的解析式、利用“鉛垂高,水平寬”求面積的最值、菱形的判定定理和分類討論是數(shù)學思想是解決此題的關(guān)鍵.22、(1)見解析;(2)【分析】(1)利用圓周角定理得到∠ACB=90°,再根據(jù)切線的性質(zhì)得∠ABD=90°,則∠BAD+∠D=90°,然后利用等量代換證明∠BED=∠D,從而判斷BD=BE;(2)利用圓周角定理得到∠AFB=90°,則根據(jù)等腰三角形的性質(zhì)DF=EF=2,再證明,列比例式求出AD的長,然后計算AD-DE即可.【詳解】(1)證明:∵是的直徑,∴,∴.∵,∴.∵是的切線,∴,∴.又∵平分,∴,∴,∴;(2)解:∵是的直徑,∴,又∵,∴.在中,根據(jù)勾股定理得,.∵,,∴,∴,即,解得,∴.本題考查了圓周角定理、等腰三角形的判定與性質(zhì)和相似三角形的判定與性質(zhì)、切線的性質(zhì).熟練掌握切線的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.23、(1)CG與⊙O相切,理由見解析;(1)見解析;(3)DE=1【解析】(1)連接CE,由AB是直徑知△ECF是直角三角形,結(jié)合G為EF中點知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根據(jù)OF⊥AB可得∠OCA+∠GCE=90°,即OC⊥GC,據(jù)此即可得證;(1)證△ABC∽△FBO得,結(jié)合AB=1BO即可得;(3)證ECD∽△EGC得,根據(jù)CE=3,DG=1.5知,解之可得.【詳解】解:(1)CG與⊙O相切,理由如下:如圖1,連接CE,∵AB是⊙O的直徑,∴∠ACB=∠ACF=90°,∵點G是EF的中點,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG與⊙O相切;(1)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,又∵∠B=∠B,∴△ABC∽△FBO,∴,即BO?AB=BC?BF,∵AB=1BO,∴1OB1=BC?BF;(3)由(1)知GC=GE=GF,∴∠F=∠GCF,∴∠EGC=1∠F,又∵∠DCE=1∠F,∴∠EGC=∠DCE,∵∠DEC=∠CEG,∴△ECD∽△EGC,∴,∵CE=3,DG=1.5,∴,整理,得:DE1+1.5DE﹣9=0,解得:DE=1或DE=﹣4.5(舍),故DE=1.本題是圓的綜合問題,解題的關(guān)鍵是掌握圓周角定理、切線的判定、相似三角形的判定與性質(zhì)及直角三角形的性質(zhì)等知識點.24、(1);(2)相交,證明見解析【分析】(1)已知拋物線的頂點坐標,可用頂點式設(shè)拋物線的解析式,然后將A點坐標代入其中,即可求出此二次函數(shù)的解析式;(2)根據(jù)拋物線的解析式,易求得對稱軸l的解析式及B、C的坐標,分別求出直線AB、BD、CE的解析式,再求出CE的長,與到拋物線的對稱軸的距離相比較即可.【詳解】解:(1)設(shè)拋物線為y=a(x﹣4)2﹣1,∵拋物線經(jīng)過點,∴3=a(0﹣4)2﹣1,a=;∴拋物線的表達式為:;(2)相交.證明:連接CE,則CE⊥BD,(x﹣4)2﹣1=0時,x1=2,x2=1.,,,對稱軸x=4,∴OB=2,AB=,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴,即,解得,∵,故拋物線的對稱軸l與⊙C相交.本題考查待定系數(shù)法求二次函數(shù)解析式、相似三角形的判定與性質(zhì)、直線與圓的位置關(guān)系等內(nèi)容,掌握數(shù)形結(jié)合的思想是解題的關(guān)鍵.25、AC=6米;CD=5.2米.【分析】根據(jù)題意和正弦的定義求出AB的長,根據(jù)余弦的定義求出CD的長.【詳解】解:由題意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈5.2(米).本題考查了解直角三角形的應用,解決本題的關(guān)鍵是①掌握特
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)保密規(guī)范制度
- 2026湖南懷化國際陸港經(jīng)濟開發(fā)區(qū)內(nèi)國有企業(yè)招聘4人備考題庫附答案
- 2026福建省福清市向陽幼兒園招聘考試備考題庫附答案
- 2026西安工業(yè)大學招聘備考題庫附答案
- 2026貴州湄潭縣人民醫(yī)院招聘編制外緊缺醫(yī)務人員參考題庫附答案
- 2026重慶醫(yī)科大學編外聘用人員招聘1人(2026年第1輪)備考題庫附答案
- 2026陜西選調(diào)生哪些學校有資格參加參考題庫附答案
- 中共南充市委社會工作部關(guān)于公開招聘南充市新興領(lǐng)域黨建工作專員的(6人)考試備考題庫附答案
- 中國農(nóng)業(yè)科學院2026年度第一批統(tǒng)一公開招聘參考題庫附答案
- 樂山職業(yè)技術(shù)學院2025年下半年公開考核招聘工作人員備考題庫附答案
- 10.在片SOLT校準件校準規(guī)范建議書
- 2025年釩觸媒催化劑項目市場調(diào)查研究報告
- T/CCS 025-2023煤礦防爆鋰電池車輛動力電源充電安全技術(shù)要求
- 路樹采伐協(xié)議書
- 客運企業(yè)交通安全宣傳課件
- 2024年廣東廣州黃埔區(qū)穗東街道政府聘員招聘考試真題
- 廣西南寧市本年度(2025)小學一年級數(shù)學統(tǒng)編版專題練習(上學期)試卷及答案
- 公安特警測試題及答案
- ERCP治療膽總管結(jié)石的護理
- 廣東省中山市2024-2025學年九年級上學期期末語文試題
- 2025年國際政治格局:多極化與地緣政治風險
評論
0/150
提交評論