中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第1頁(yè)
中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第2頁(yè)
中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第3頁(yè)
中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第4頁(yè)
中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題_第5頁(yè)
已閱讀5頁(yè),還剩46頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題一、中考數(shù)學(xué)幾何綜合壓軸題1.問題情境:如圖1,在正方形ABCD中,E為邊BC上一點(diǎn)(不與點(diǎn)B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點(diǎn)M、P、N.判斷線段DN、MB、EC之間的數(shù)量關(guān)系,并說明理由.問題探究:在“問題情境”的基礎(chǔ)上,(1)如圖2,若垂足P恰好為AE的中點(diǎn),連接BD,交MN于點(diǎn)Q,連接EQ,并延長(zhǎng)交邊AD于點(diǎn)F.求∠AEF的度數(shù);(2)如圖3,當(dāng)垂足P在正方形ABCD的對(duì)角線BD上時(shí),連接AN,將△APN沿著AN翻折,點(diǎn)P落在點(diǎn)P'處.若正方形ABCD的邊長(zhǎng)為4,AD的中點(diǎn)為S,求P'S的最小值.問題拓展:如圖4,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)M、N分別為邊AB、CD上的點(diǎn),將正方形ABCD沿著MN翻折,使得BC的對(duì)應(yīng)邊B'C'恰好經(jīng)過點(diǎn)A,C'N交AD于點(diǎn)F.分別過點(diǎn)A、F作AG⊥MN,F(xiàn)H⊥MN,垂足分別為G、H.若AG=,請(qǐng)直接寫出FH的長(zhǎng).解析:?jiǎn)栴}情境:.理由見解析;問題探究:(1);(2)的最小值為;問題拓展:.【分析】問題情境:過點(diǎn)B作BF∥MN分別交AE、CD于點(diǎn)G、F,證出四邊形MBFN為平行四邊形,得出NF=MB,證明△ABE≌△BCF得出BE=CF,即可得出結(jié)論;問題探究:(1)連接AQ,過點(diǎn)Q作HI∥AB,分別交AD、BC于點(diǎn)H、I,證出△DHQ是等腰直角三角形,HD=HQ,AH=QI,證明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直角三角形,得出∠EAQ=∠AEQ=45°,即可得出結(jié)論;(2)連接AC交BD于點(diǎn)O,則△APN的直角頂點(diǎn)P在OB上運(yùn)動(dòng),設(shè)點(diǎn)P與點(diǎn)B重合時(shí),則點(diǎn)P′與點(diǎn)D重合;設(shè)點(diǎn)P與點(diǎn)O重合時(shí),則點(diǎn)P′的落點(diǎn)為O′,由等腰直角三角形的性質(zhì)得出∠ODA=∠ADO′=45°,當(dāng)點(diǎn)P在線段BO上運(yùn)動(dòng)時(shí),過點(diǎn)P作PG⊥CD于點(diǎn)G,過點(diǎn)P′作P′H⊥CD交CD延長(zhǎng)線于點(diǎn)H,連接PC,證明△APB≌△CPB得出∠BAP=∠BCP,證明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正方形的性質(zhì)得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH=45°,故∠P'DA=45°,點(diǎn)P'在線段DO'上運(yùn)動(dòng);過點(diǎn)S作SK⊥DO',垂足為K,即可得出結(jié)果;問題拓展:延長(zhǎng)AG交BC于E,交DC的延長(zhǎng)線于Q,延長(zhǎng)FH交CD于P,則EG=AG=,PH=FH,得出AE=5,由勾股定理得出BE==3,得出CE=BC﹣BE=1,證明△ABE∽△QCE,得出QE=AE=,AQ=AE+QE=,證明△AGM∽△ABE,得出AM=,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,求出B'M=,AC'=1,證明△AFC'∽△MAB',得出AF=,證明△DFP∽△DAQ,得出FP=,得出FH=FP=.【詳解】問題情境:因?yàn)樗倪呅问钦叫?,所?過點(diǎn)作分別交于點(diǎn).所以四邊形為平行四邊形.所以.所以,所以,又因?yàn)?,所?,所以.因?yàn)?,所以,所?問題探究:(1)連接,過點(diǎn)作,分別交于點(diǎn).易得四邊形矩形.所以且.因?yàn)槭钦叫蔚膶?duì)角線,所以.所以是等腰直角三角形,.所以.因?yàn)槭堑拇怪逼椒志€,所以.所以.所以.所以.所以.所以是等腰直角三角形,,即.(2)如圖所示,連接交于點(diǎn),由題意易得的直角頂點(diǎn)在上運(yùn)動(dòng).設(shè)點(diǎn)與點(diǎn)重合,則點(diǎn)與點(diǎn)重合;設(shè)與點(diǎn)重合,則點(diǎn)的落點(diǎn)為.易知.當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),過點(diǎn)作的垂線,垂足為,過點(diǎn)作,垂足為點(diǎn).易證:,所以,因?yàn)槭钦叫蔚膶?duì)角線,所以,易得,所以.所以.所以,故.所以點(diǎn)在線段上運(yùn)動(dòng).過點(diǎn)作,垂足為,因?yàn)辄c(diǎn)為的中點(diǎn),所以,則的最小值為.問題拓展:解:延長(zhǎng)AG交BC于E,交DC的延長(zhǎng)線于Q,延長(zhǎng)FH交CD于P,如圖4:則EG=AG=,PH=FH,∴AE=5,在Rt△ABE中,BE==3,∴CE=BC﹣BE=1,∵∠B=∠ECQ=90°,∠AEB=∠QEC,∴△ABE∽△QCE,∴∵AG⊥MN,∴∠AGM=90°=∠B,∵∠MAG=∠EAB,∴△AGM∽△ABE,∴,即,解得:,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,∴B'M=,∵∠BAD=90°,∴∠B'AM=∠C'FA,∴△AFC'∽△MAB',∴,解得:∵AG⊥MN,F(xiàn)H⊥MN,∴AG∥FH,∴AQ∥FP,∴△DFP∽△DAQ,∴,即,解得:FP=,∴FH=.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解題的關(guān)鍵.2.在中,點(diǎn)D,E分別是邊上的點(diǎn),.基礎(chǔ)理解:(1)如圖1,若,求的值;證明與拓展:(2)如圖2,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)a度,得到,連接;①求證:;②如圖3,若在旋轉(zhuǎn)的過程中,點(diǎn)恰好落在上時(shí),連接,則的面積為________.解析:(1);(2)①見詳解;②13.44【分析】(1)利用平行線分線段定理,直接求解即可;、(2)①先推出,從而得,進(jìn)而即可得到結(jié)論;②先推出AE=AE1=8,DE=D1E1=10,過點(diǎn)A作AM⊥DE于點(diǎn)M,則DM=3.6,D1E=2.8,再證明∠D1EE1=90°,進(jìn)而即可求解.【詳解】解:(1)∵,,∴=;(2)①∵將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)a度,得到,∴=AD,=AE,∠BAD1=∠CAE1,∵,∴,即,∴,∴,∴;②由①可知,∴,∵將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到,點(diǎn)恰好落在上,∴AD1=AD=6,∠D1AE1=∠DAE=90°,∴AE=AE1=AD1=8,DE=D1E1=,過點(diǎn)A作AM⊥DE于點(diǎn)M,則DM=D1M=AD×cos∠ADE=AD×=6×=3.6,∴D1E=10-3.6×2=2.8,∵∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,又∵AD1=AD,AE=AE1,∴∠ADE=,∴∠AED+=∠AED+∠ADE=90°,即:∠D1EE1=90°,∴,∴的面積=D1E?EE1=×2.8×9.6=13.44.故答案是:13.44.【點(diǎn)睛】本題主要考查相似三角形的判定和性質(zhì),解直角三角形,勾股定理,平行線分線段成比例定理,旋轉(zhuǎn)的性質(zhì),熟練掌握相似三角形的判定和性質(zhì),是解題的關(guān)鍵.3.(了解概念)在凸四邊形中,若一邊與它的兩條鄰邊組成的兩個(gè)內(nèi)角相等,則稱該四邊形為鄰等四邊形,這條邊叫做這個(gè)四邊形的鄰等邊.(理解運(yùn)用)(1)在鄰等四邊形中,,,若是這個(gè)鄰等四邊形的鄰等邊,則的度數(shù)為__________;(2)如圖,凸四邊形中,P為邊的中點(diǎn),,判斷四邊形是否為鄰等四邊形,并證明你的結(jié)論;(拓展提升)(3)在平面直角坐標(biāo)系中,為鄰等四邊形的鄰等邊,且邊與x軸重合,已知,,,若在邊上使的點(diǎn)P有且僅有1個(gè),則m的值是__________.解析:(1)130°;(2)四邊形ABCD是鄰等四邊形,理由見解析;(3)﹣5±4【分析】(1)根據(jù)鄰等四邊形的定義即可求解;(2)由△ADP∽△PDC,可得,∠DAP=∠DPC,∠APD=∠PCD,由P為AB的中點(diǎn),可得AP=BP,則,可證△BPC∽△ADP,由相似三角形的性質(zhì)得出∠A=∠B即可;(3)①若點(diǎn)B在點(diǎn)A右側(cè),如圖,由AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,可證△ADP∽△BPC,可得=,設(shè)點(diǎn)P(n,0),由等腰直角三角形可求∠BAD=45°,可求B、C橫坐標(biāo)之差為3,B(m+3,0),將AP,BP,AD,BC,代入得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個(gè)解,可求得m=﹣5+4;②若點(diǎn)B在點(diǎn)A左側(cè),可求得∠BAD=135°,可證△ADP∽△BPC,可得=,可求得B、C橫坐標(biāo)之差為3,,可求得m=﹣5﹣4.【詳解】解:(1)∵CD為鄰等邊,∴∠C=∠D,又∵,,∴∠C=∠D=(360°﹣∠A﹣∠B)÷2=130°,∴∠C=130°.故答案為:130°;(2)四邊形ABCD是鄰等四邊形,理由如下:∵△ADP∽△PDC,∴,∠DAP=∠DPC,∠APD=∠PCD,∠ADP=∠PDC,又∵P為AB的中點(diǎn),∴AP=BP,∴,∴,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四邊形ABCD為鄰等四邊形;(3)若點(diǎn)B在點(diǎn)A右側(cè),如圖,∵AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴=,設(shè)點(diǎn)P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,過點(diǎn)C作CE⊥x軸于點(diǎn)E,則∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵點(diǎn)C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD==,BC==,代入=得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個(gè)解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±4,又∵點(diǎn)C在點(diǎn)D右側(cè),∴m=﹣5+4;②若點(diǎn)B在點(diǎn)A左側(cè),如圖,此時(shí),∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴=,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=,BC=,∴,解得:m=﹣5±4,又∵點(diǎn)C在點(diǎn)D左側(cè),∴m=﹣5﹣4;綜上所述:m=﹣5±4.【點(diǎn)睛】本題是相似綜合題,考查新定義圖形,仔細(xì)閱讀題目,抓住定義中的性質(zhì),會(huì)驗(yàn)證新定義圖形,相似三角形的判定與性質(zhì),一元二次方程根的判別式,利用相似三角形的性質(zhì)構(gòu)造關(guān)于n的一元二次方程是解題關(guān)鍵.4.[探究函數(shù)的圖象與性質(zhì)](1)函數(shù)的自變量的取值范圍是;(2)下列四個(gè)函數(shù)圖象中函數(shù)的圖象大致是;(3)對(duì)于函數(shù),求當(dāng)時(shí),的取值范圍.請(qǐng)將下列的求解過程補(bǔ)充完整.解:∵∴∵∴.[拓展運(yùn)用](4)若函數(shù),則的取值范圍.解析:(1);(2)C;(3)4,4;(4)【詳解】試題分析:本題的⑴問抓住函數(shù)是由分式給定的,所以抓住是分母不為0,即可確定自變量的取值范圍.本題的⑵問結(jié)合第⑴問中的,即或進(jìn)行分類討論函數(shù)值的大致取值范圍,即可得到函數(shù)的大致圖象.本題的第⑶問根據(jù)函數(shù)的配方逆向展開即推出“()”應(yīng)填寫“常數(shù)”部分,再根據(jù)配方情況可以得到當(dāng)當(dāng)時(shí),的取值范圍.本題的⑷問現(xiàn)將函數(shù)改寫為的形式,再按⑶的形式進(jìn)行配方變形即可求的取值范圍.試題解析:(1)由于函數(shù)是分式給定的,所要滿足分母不為0,所以.故填:.(2)即或;當(dāng)時(shí),的值是正數(shù),此時(shí)畫出的圖象只能在第一象限;當(dāng)時(shí),的值是負(fù)數(shù),此時(shí)畫出的圖象只能在第三象限;所以函數(shù)的圖象只在直角坐標(biāo)系的一、三象限.故其大致圖象應(yīng)選C.(3)∵,∴.故分別填:;(4)∵(這里隱含有首先是正數(shù))∴∵∴.5.如圖所示,在△ABC中,,D、E分別是邊AB、BC上的動(dòng)點(diǎn),且,連結(jié)AD、AE,點(diǎn)M、N、P分別是CD、AE、AC的中點(diǎn),設(shè).(1)觀察猜想①在求的值時(shí),小明運(yùn)用從特殊到一般的方法,先令,解題思路如下:如圖1,先由,得到,再由中位線的性質(zhì)得到,,進(jìn)而得出△PMN為等邊三角形,∴.②如圖2,當(dāng),仿照小明的思路求的值;(2)探究證明如圖3,試猜想的值是否與的度數(shù)有關(guān),若有關(guān),請(qǐng)用含的式子表示出,若無關(guān),請(qǐng)說明理由;(3)拓展應(yīng)用如圖4,,點(diǎn)D、E分別是射線AB、CB上的動(dòng)點(diǎn),且,點(diǎn)M、N、P分別是線段CD、AE、AC的中點(diǎn),當(dāng)時(shí),請(qǐng)直接寫出MN的長(zhǎng).解析:(1)②;(2)的值與的度數(shù)有關(guān),;(3)MN的長(zhǎng)為或.【分析】(1)②先根據(jù)線段的和差求出,再根據(jù)中位線定理、平行線的性質(zhì)得出,從而可得出,然后根據(jù)等腰直角三角形的性質(zhì)即可得;(2)參照題(1)的方法,得出為等腰三角形和的度數(shù),再利用等腰三角形的性質(zhì)即可求出答案;(3)分兩種情況:當(dāng)點(diǎn)D、E分別是邊AB、CB上的動(dòng)點(diǎn)時(shí)和當(dāng)點(diǎn)D、E分別是邊AB、CB的延長(zhǎng)線上的動(dòng)點(diǎn)時(shí),如圖(見解析),先利用等腰三角形的性質(zhì)與判定得出,再根據(jù)相似三角形的判定與性質(zhì)得出BC、CE的長(zhǎng),由根據(jù)等腰三角形的三線合一性得出,從而可得的值,最后分別利用(2)的結(jié)論即可得MN的長(zhǎng).【詳解】(1)②∴∴為等腰直角三角形,∵點(diǎn)M、N、P分別是CD、AE、AC的中點(diǎn)∴∴為等腰直角三角形,∴即;(2)的值與的度數(shù)有關(guān),求解過程如下:由(1)可知,,即為等腰三角形如圖5,作則在中,,即則;(3)依題意,分以下兩種情況:①當(dāng)點(diǎn)D、E分別是邊AB、CB上的動(dòng)點(diǎn)時(shí)如圖6,作的角平分線交AB邊于點(diǎn)F,并連結(jié)BP,,即設(shè),則解得或(不符題意,舍去)即由(2)可知,點(diǎn)P是AC上的中點(diǎn),(等腰三角形的三線合一)在中,,即②如圖7,當(dāng)點(diǎn)D、E分別是邊AB、CB的延長(zhǎng)線上的動(dòng)點(diǎn)時(shí)同理可得:綜上,MN的長(zhǎng)為或.【點(diǎn)睛】本題考查了中位線定理、平行線的性質(zhì)、相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、解直角三角形等知識(shí)點(diǎn),較難的是題(3),依據(jù)題意,正確分兩種情況,并結(jié)合題(2)的結(jié)論是解題關(guān)鍵.6.已知四邊形ABCD中,E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.問題發(fā)現(xiàn)如圖,若四邊形ABCD是矩形,且于G,,填空:______;當(dāng)矩形ABCD是正方形時(shí),______;拓展探究如圖,若四邊形ABCD是平行四邊形,試探究:當(dāng)與滿足什么關(guān)系時(shí),成立?并證明你的結(jié)論;解決問題如圖,若于G,請(qǐng)直接寫出的值.解析:(1)①,②1;(2)當(dāng)+=180°時(shí),成立,理由見解析;(3).【分析】(1)根據(jù)矩形的性質(zhì)先一步證明△AED~△DFC,然后進(jìn)一步利用相似三角形性質(zhì)求解即可;(2)在AD的延長(zhǎng)線上取一點(diǎn)M,使得CM=CF,則∠CMD=∠CFM,通過證明△ADE~△DCM進(jìn)一步求解即可;(3)過C點(diǎn)作CN⊥AD于N點(diǎn),CM⊥AB交AB延長(zhǎng)線于M點(diǎn),連接BD,先證明△BAD≌△BCD,然后進(jìn)一步證明△BCM~△DCN,再結(jié)合勾股定理求出CN,最終通過證明△AED~△NFC進(jìn)一步求解即可.【詳解】(1)∵四邊形ABCD為矩形,∴∠A=∠FDC=90°,AB=CD,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED~△DFC,∴,∴①,②若四邊形ABCD為正方形,,故答案為:①,②1;(2)當(dāng)+=180°時(shí),成立,理由如下:如圖,在AD的延長(zhǎng)線上取一點(diǎn)M,使得CM=CF,則∠CMD=∠CFM,∵四邊形ABCD為平行四邊形,∴AB∥CD,AD∥BC,∴∠A=∠CDM,∵∠B+∠EGC=180°,∴∠BEG+∠FCB=180°,∵∠BEG+∠AED=180°,∴∠AED=∠FCB,∵AD∥BC,∴∠CFM=∠FCB,∴∠CMD=∠AED,∴△ADE~△DCM,∴,即:;(3),理由如下:過C點(diǎn)作CN⊥AD于N點(diǎn),CM⊥AB交AB延長(zhǎng)線于M點(diǎn),連接BD,設(shè)CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CAN=90°,∴四邊形AMCN為矩形,∴AM=CN,AN=CM,在△BAD與△BCD中,∵AD=CD,AB=BC,BD=BD,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM~△DCN,∴,∴,∴,在Rt△CMB中,,BM=AM?AB=,由勾股定理可得:,∴,解得:(舍去)或,∴,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF,∴△AED~△NFC,∴.【點(diǎn)睛】本題主要考查了相似三角形性質(zhì)與判定和全等三角形性質(zhì)與判定及矩形性質(zhì)的綜合運(yùn)用,熟練掌握相關(guān)概念是解題關(guān)鍵.7.問題提出(1)如圖①,在△ABC中,BC=6,D為BC上一點(diǎn),AD=4,則△ABC面積的最大值是.問題探究(2)如圖②,已知矩形ABCD的周長(zhǎng)為12,求矩形ABCD面積的最大值.問題解決(3)如圖③,△ABC是葛叔叔家的菜地示意圖,其中AB=30米,BC=40米,AC=50米,現(xiàn)在他想利用周邊地的情況,把原來的三角形地拓展成符合條件的面積盡可能大、周長(zhǎng)盡可能長(zhǎng)的四邊形地,用來建魚塘.已知葛叔叔欲建的魚塘是四邊形ABCD,且滿足∠ADC=60°.你認(rèn)為葛叔叔的想法能否實(shí)現(xiàn)?若能,求出這個(gè)四邊形魚塘周長(zhǎng)的最大值;若不能,請(qǐng)說明理由.解析:(1)12;(2)9;(3)能實(shí)現(xiàn);170(米).【分析】(1)當(dāng)AD⊥BC時(shí),△ABC的面積最大.(2)由題意矩形鄰邊之和為6,設(shè)矩形的一邊為m,另一邊為6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函數(shù)的性質(zhì)解決問題即可.(3)由題意,AC=100,∠ADC=60°,即點(diǎn)D在優(yōu)弧ADC上運(yùn)動(dòng),當(dāng)點(diǎn)D運(yùn)動(dòng)到優(yōu)弧ADC的中點(diǎn)時(shí),四邊形魚塘面積和周長(zhǎng)達(dá)到最大值,此時(shí)△ACD為等邊三角形,計(jì)算出△ADC的面積和AD的長(zhǎng)即可得出這個(gè)四邊形魚塘面積和周長(zhǎng)的最大值.【詳解】(1)如圖①中,∵BC=6,AD=4,∴當(dāng)AD⊥BC時(shí),△ABC的面積最大,最大值=×6×4=12.故答案為12.(2)∵矩形的周長(zhǎng)為12,∴鄰邊之和為6,設(shè)矩形的一邊為m,另一邊為6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3時(shí),S有最大值,最大值為9.(3)如圖③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O(shè)為圓心,OA長(zhǎng)為半徑畫⊙O,∵∠ADC=60°,∴點(diǎn)D在優(yōu)弧ADC上運(yùn)動(dòng),當(dāng)點(diǎn)D是優(yōu)弧ADC的中點(diǎn)時(shí),四邊形ABCD面積取得最大值,設(shè)D′是優(yōu)弧ADC上任意一點(diǎn),連接AD′,CD′,延長(zhǎng)CD′到F,使得D′F=D′A,連接AF,則∠AFC=30°=∠ADC,∴點(diǎn)F在D為圓心DA為半徑的圓上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此時(shí)四邊形ADCB的周長(zhǎng)最大,最大值=40+30+50+50=170(米).答:這個(gè)四邊形魚塘周長(zhǎng)的最大值為170(米).【點(diǎn)睛】本題主要是最大值的考查,求最大值,常用方法為:(1)利用平方為非負(fù)的性質(zhì)求解;(2)利用三角形兩邊之和大于第三邊求解,在求解過程中,關(guān)鍵在與將要求解的線段集中到一個(gè)三角形中8.如圖1,在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn),連接.將繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當(dāng)時(shí),;②當(dāng)時(shí),;(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明;(3)問題解決當(dāng)旋轉(zhuǎn)至?xí)r,請(qǐng)直接寫出的長(zhǎng).解析:(1)①;②;(2)不變,證明見解析;(3)2或2【分析】(1)①當(dāng)=0°時(shí),在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點(diǎn)D、E分別是邊BC、AC的中點(diǎn),分別求出AE、BD的大小,即可求出BD、AE的比值;②中,圖形如下,與①有所變化,但求解方法完全相同;(2)證明△ECA∽△DCB,從而根據(jù)邊長(zhǎng)成比例得出比值;(3)存在2種情況,一種是當(dāng)時(shí),;另一種是當(dāng)時(shí),,分別利用勾股定理可求得.【詳解】(1)①∵在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn)∴CD=BD=2,在Rt△ABC中,AB=,AC=∴AE=∴;②圖形如下:同理可知:BC=4,AC=,DC=2,DE=,CE=∴BD=DC+CB=2+4=6,AE=EC+AC==∴;(2)不變,理由如下∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴;(3)情況一:當(dāng)時(shí),,圖形如下,過點(diǎn)D作BC的垂線,交BC延長(zhǎng)線于點(diǎn)F∵ED∥AC,∴∠ACD=∠EDC=90°∵∠ACB=∠ECD=30°∴∠ECF=30°,∴∠FCD=60°∵CD=2∴在Rt△DCF中,CF=1,F(xiàn)D=∴FB=FC=CB=1+4=5∴在Rt△FDB中,DB=2;情況二:當(dāng)時(shí),,圖形如下,過點(diǎn)D作BC的垂線,交BC于點(diǎn)F∵DE∥AC,∴∠ACD=90°∵∠ACB=30°,∴∠DCF=60°∵CD=2,∴在Rt△CDF中,CF=1,DF=∴FB=CB-CF=4-1=3∴在Rt△FDB中,DB=2綜上得:DB的長(zhǎng)為2或2.【點(diǎn)睛】此題屬于旋轉(zhuǎn)的綜合題.考查了旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理等知識(shí).注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.9.(1)(問題背景)如圖1,在中,,,D是直線BC上的一點(diǎn),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AE,連接CE,求證:;(2)(嘗試應(yīng)用)如圖2,在(1)的條件下,延長(zhǎng)DE,AC交于點(diǎn)G,交DE于點(diǎn)F.求證:;(3)(拓展創(chuàng)新)如圖3,是內(nèi)一點(diǎn),,,,直接寫出的面積為_____________.解析:(1)見解析;(2)見解析;(3)【分析】(1)【問題背景】如圖1,根據(jù)SAS證明三角形全等即可.(2)【嘗試應(yīng)用】如圖2,過點(diǎn)D作DK⊥DC交FB的延長(zhǎng)線于K.證明△ECG≌△DKF(AAS),推出DF=EG,再證明FG=DE=即可.(3)【拓展創(chuàng)新】如圖3中,過點(diǎn)A作AE⊥AD交BD于E,連接CE.利用全等三角形的性質(zhì)證明CE=BD,CE⊥BD,再根據(jù)三角形面積公式即可求解.【詳解】(1)【問題背景】證明:如圖1,∵,∴,在和中,,∴.(2)【嘗試應(yīng)用】證明:如圖2,過點(diǎn)D作交FB的延長(zhǎng)線于K.∵,,∴,∵,,∴,∴,∴,∵,∴,,∴,∵,,∴,∴,在和中,,∴,∴,∵,∴,∴,即.(3)【拓展創(chuàng)新】如圖3中,過點(diǎn)A作交BD于E,連接CE.∵,,∴與都是等腰直角三角形,同法可證,∴,∵,∴,∴.故答案為:.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考?jí)狠S題.10.問題背景(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點(diǎn),過點(diǎn)E作EF∥AB交BC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:四邊形DBFE的面積,△EFC的面積,△ADE的面積.探究發(fā)現(xiàn)(2)在(1)中,若,,DE與BC間的距離為.請(qǐng)證明.拓展遷移(3)如圖2,□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試?yán)茫?)中的結(jié)論求△ABC的面積.解析:(1),,;(2)見解析;(3)18【分析】(1)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì)即可解決問題.(2)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì),分別求出S1、S2即可解決問題.(3)過點(diǎn)G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形,利用(2)的結(jié)論求出□DBHG的面積,△GHC的面積即可.【詳解】(1)∵DE∥BC,EF∥AB,∴四邊形DBFE是平行四邊形,∴S=2×3=6,∴∠AED=∠C,∠A=∠CEF∴△ADE∽△EFC∴S2=1,故答案為6,9,1.(2)證明:∵DE∥BC,EF∥AB,∴四邊形DBFE為平行四邊形,,.∴△ADE∽△EFC.∴.∵,∴.∴.而,∴(3)解:過點(diǎn)G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形.∴∠GHC=∠B,BD=HG,DG=BH,∵四邊形DEFG為平行四邊形,∴DG=EF.∴BH=EF.∴BE=HF,∴△DBE≌△GHF.∴△GHC的面積為5+3=8.由(2)得,□DBHG的面積為.∴△ABC的面積為.【點(diǎn)睛】本題考查四邊形綜合題、相似三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為我們熟悉的題型,屬于中考?jí)狠S題,11.在中,,,是邊上一點(diǎn),將沿折疊得到,連接.(1)特例發(fā)現(xiàn):如圖1,當(dāng),落在直線上時(shí),①求證:;②填空:的值為______;(2)類比探究:如圖2,當(dāng),與邊相交時(shí),在上取一點(diǎn),使,交于點(diǎn).探究的值(用含的式子表示),并寫出探究過程;(3)拓展運(yùn)用:在(2)的條件下,當(dāng),是的中點(diǎn)時(shí),若,求的長(zhǎng).解析:(1)①見解析;②1;(2),見解析;(3)【分析】(1)①根據(jù)折疊性質(zhì)證明即可;②當(dāng),證明,即可得出的值;(2)延長(zhǎng)交于點(diǎn),根據(jù)折疊性質(zhì)證明,即可得出結(jié)論;(3)由(2)可知,設(shè),則,,,可得,再由勾股定理列方程求解即可.【詳解】解:(1)①證明:延長(zhǎng)交于點(diǎn).由折疊得.∴.∵,∴.②當(dāng),即時(shí),可知AC=BC,在和中,,∴(AAS),∴,∴.故答案為:1;(2)解:.理由:延長(zhǎng)交于點(diǎn),由折疊得.∴,∵,∴,∵,∴,∴.(3)解:由折疊得,,∵是的中點(diǎn),∴,∴,,,由(2)知,∴,,是的中點(diǎn),∴,∴,設(shè),則,,,∴,∴,∴,,∴,在中,由勾股定理得,∵,∴,解得(負(fù)值舍去),∴.【點(diǎn)睛】本題為三角形綜合題,考查折疊的性質(zhì),全等三角形判定與性質(zhì),相似三角形的判定及性質(zhì),勾股定理等知識(shí)點(diǎn),根據(jù)折疊性質(zhì)找到角度之間的關(guān)系是解題的關(guān)鍵.12.小圓同學(xué)對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了拓展探究.(一)猜測(cè)探究在中,,是平面內(nèi)任意一點(diǎn),將線段繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)與相等的角度,得到線段,連接.(1)如圖1,若是線段上的任意一點(diǎn),請(qǐng)直接寫出與的數(shù)量關(guān)系是,與的數(shù)量關(guān)系是;(2)如圖2,點(diǎn)是延長(zhǎng)線上點(diǎn),若是內(nèi)部射線上任意一點(diǎn),連接,(1)中結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說明理由.(二)拓展應(yīng)用如圖3,在中,,,,是上的任意點(diǎn),連接,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),得到線段,連接.求線段長(zhǎng)度的最小值.解析:(一)(1)結(jié)論:,.理由見解析;(2)如圖2中,①中結(jié)論仍然成立.理由見解析;(二)的最小值為.【分析】(一)①結(jié)論:,.根據(jù)證明≌即可.②①中結(jié)論仍然成立.證明方法類似.(二)如圖3中,在上截取,連接,作于,作于.理由全等三角形的性質(zhì)證明,推出當(dāng)?shù)闹底钚r(shí),的值最小,求出的值即可解決問題.【詳解】(一)(1)結(jié)論:,.理由:如圖1中,∵,∴,∴,∵,,∴≌(),∴.故答案為,.(2)如圖2中,①中結(jié)論仍然成立.理由:∵,∴,∴,∵,,∴≌(),∴.(二)如圖3中,在上截取,連接,作于,作于.∵,∴,∵,,∴≌(),∴,∴當(dāng)?shù)闹底钚r(shí),的值最小,在中,∵,,∴,∵,∴,∴,在,∵,∴,根據(jù)垂線段最短可知,當(dāng)點(diǎn)與重合時(shí),的值最小,∴的最小值為.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),解直角三角形,垂線段最短等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,學(xué)會(huì)利用垂線段最短解決最值問題,屬于中考?jí)狠S題.13.如圖1,△ABC和△DCE都是等邊三角形.探究發(fā)現(xiàn)(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請(qǐng)說明理由.拓展運(yùn)用(2)若B、C、E三點(diǎn)不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長(zhǎng).(3)若B、C、E三點(diǎn)在一條直線上(如圖2),且△ABC和△DCE的邊長(zhǎng)分別為1和2,求△ACD的面積及AD的長(zhǎng).解析:(1)全等,理由見解析;(2)BD=;(3)△ACD的面積為,AD=.【分析】(1)依據(jù)等式的性質(zhì)可證明∠BCD=∠ACE,然后依據(jù)SAS可證明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理計(jì)算AE的長(zhǎng),可得BD的長(zhǎng);(3)過點(diǎn)A作AF⊥CD于F,先根據(jù)平角的定義得∠ACD=60°,利用特殊角的三角函數(shù)可得AF的長(zhǎng),由三角形面積公式可得△ACD的面積,最后根據(jù)勾股定理可得AD的長(zhǎng).【詳解】解:(1)全等,理由是:∵△ABC和△DCE都是等邊三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如圖3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等邊三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴,∴BD=;(3)如圖2,過點(diǎn)A作AF⊥CD于F,∵B、C、E三點(diǎn)在一條直線上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等邊三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=,∴S△ACD=,∴CF=AC×cos∠ACF=1×,F(xiàn)D=CD﹣CF=,在Rt△AFD中,AD2=AF2+FD2=,∴AD=.【點(diǎn)睛】本題考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形,勾股定理等,第(3)小題巧作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.14.小明將兩個(gè)直角三角形紙片如圖(1)那樣拼放在同一平面上,抽象出如圖(2)的平面圖形,與恰好為對(duì)頂角,,連接,,點(diǎn)F是線段上一點(diǎn).探究發(fā)現(xiàn):(1)當(dāng)點(diǎn)F為線段的中點(diǎn)時(shí),連接(如圖(2),小明經(jīng)過探究,得到結(jié)論:.你認(rèn)為此結(jié)論是否成立?_________.(填“是”或“否”)拓展延伸:(2)將(1)中的條件與結(jié)論互換,即:若,則點(diǎn)F為線段的中點(diǎn).請(qǐng)判斷此結(jié)論是否成立.若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.問題解決:(3)若,求的長(zhǎng).解析:(1)是;(2)結(jié)論成立,理由見解析;(3)【分析】(1)利用等角的余角相等求出∠A=∠E,再通過AB=BD求出∠A=∠ADB,緊接著根據(jù)直角三角形斜邊的中線等于斜邊的一半求出FD=FE=FC,由此得出∠E=∠FDE,據(jù)此進(jìn)一步得出∠ADB=∠FDE,最終通過證明∠ADB+∠EDC=90°證明結(jié)論成立即可;(2)根據(jù)垂直的性質(zhì)可以得出90°,90°,從而可得,接著證明出,利用可知,從而推出,最后通過證明得出,據(jù)此加以分析即可證明結(jié)論;(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)得,故而,在中,利用勾股定理求出,由此得出,緊接著,繼續(xù)通過勾股定理求出,最后進(jìn)一步證明,再根據(jù)相似三角形性質(zhì)得出,從而求出,最后進(jìn)一步分析求解即可.【詳解】(1)∵∠ABC=∠CDE=90°,∴∠A+∠ACB=∠E+∠ECD,∵∠ACB=∠ECD,∴∠A=∠E,∵AB=BD,∴∠A=∠ADB,在中,∵F是斜邊CE的中點(diǎn),∴FD=FE=FC,∴∠E=∠FDE,∵∠A=∠E,∴∠ADB=∠FDE,∵∠FDE+∠FDC=90°,∴∠ADB+∠FDC=90°,即∠FDB=90°,∴BD⊥DF,結(jié)論成立,故答案為:是;(2)結(jié)論成立,理由如下:∵,∴90°,90°,∴,∵,∴.∴.又∵,∴.∴.又90°,90°,,∴,∴.∴.∴F為的中點(diǎn);(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)可知,∴,又∵,在中,,∴,在中,,在與中,∵∠ABC=∠EDC,∠ACB=∠ECD,∴,∴,∴,∴.【點(diǎn)睛】本題主要考查了直角三角形的性質(zhì)和相似三角形的性質(zhì)及判定的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.15.(1)(閱讀與證明)如圖1,在正的外角內(nèi)引射線,作點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E(點(diǎn)E在內(nèi)),連接,、分別交于點(diǎn)F、G.①完成證明:點(diǎn)E是點(diǎn)C關(guān)于的對(duì)稱點(diǎn),,,.正中,,,,得.在中,,______.在中,,______.②求證:.(2)(類比與探究)把(1)中的“正”改為“正方形”,其余條件不變,如圖2.類比探究,可得:①______;②線段、、之間存在數(shù)量關(guān)系___________.(3)(歸納與拓展)如圖3,點(diǎn)A在射線上,,,在內(nèi)引射線,作點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E(點(diǎn)E在內(nèi)),連接,、分別交于點(diǎn)F、G.則線段、、之間的數(shù)量關(guān)系為__________.解析:(1)①60°,30°;②證明見解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根據(jù)等量代換和直角三角形的性質(zhì)即可確定答案;②在FB上取AN=AF,連接AN.先證明△AFN是等邊三角形,得到∠BAN=∠2=∠1,然后再證明△ABN≌△AEF,然后利用全等三角形的性質(zhì)以及線段的和差即可證明;(2)類比(1)的方法即可作答;(3)根據(jù)(1)(2)的結(jié)論,即可總結(jié)出答案.【詳解】解:(1)①∵,,∴,即60°;∵∴故答案為60°,30°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=60°∴△AFN是等邊三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①點(diǎn)E是點(diǎn)C關(guān)于的對(duì)稱點(diǎn),,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案為45°;②在FB上取FN=AF,連接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵點(diǎn)C關(guān)于的對(duì)稱點(diǎn)E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:當(dāng)∠BAC=60°時(shí)BF=AF+2FG=;由(2)得:當(dāng)∠BAC=90°時(shí)BF=AF+2FG=;以此類推,當(dāng)當(dāng)∠BAC=60°時(shí),.【點(diǎn)睛】本題考查了軸對(duì)稱的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)以及三角函數(shù)的應(yīng)用,靈活應(yīng)用所學(xué)知識(shí)是解答本題的關(guān)鍵.16.如圖1,在等腰三角形中,點(diǎn)分別在邊上,連接點(diǎn)分別為的中點(diǎn).(1)觀察猜想圖1中,線段的數(shù)量關(guān)系是____,的大小為_____;(2)探究證明把繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)到如圖2所示的位置,連接判斷的形狀,并說明理由;(3)拓展延伸把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,請(qǐng)求出面積的最大值.解析:(1)相等,;(2)是等邊三角形,理由見解析;(3)面積的最大值為.【分析】(1)根據(jù)"點(diǎn)分別為的中點(diǎn)",可得MNBD,NPCE,根據(jù)三角形外角和定理,等量代換求出.(2)先求出,得出,根據(jù)MNBD,NPCE,和三角形外角和定理,可知MN=PN,再等量代換求出,即可求解.(3)根據(jù),可知BD最大值,繼而求出面積的最大值.【詳解】由題意知:AB=AC,AD=AE,且點(diǎn)分別為的中點(diǎn),∴BD=CE,MNBD,NPCE,MN=BD,NP=EC∴MN=NP又∵M(jìn)NBD,NPCE,∠A=,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=根據(jù)三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C=.是等邊三角形.理由如下:如圖,由旋轉(zhuǎn)可得在ABD和ACE中.點(diǎn)分別為的中點(diǎn),是的中位線,且同理可證且.在中∵∠MNP=,MN=PN是等邊三角形.根據(jù)題意得:即,從而的面積.∴面積的最大值為.【點(diǎn)睛】本題主要考查了三角形中點(diǎn)的性質(zhì)、三角形相似的判定定理、三角形外角和定理以及圖形旋轉(zhuǎn)的相關(guān)知識(shí);正確掌握三角形相似的判定定理、三角形外角和定理以及圖形旋轉(zhuǎn)的相關(guān)知識(shí)是解題的關(guān)鍵.17.(感知)(1)如圖①,在四邊形ABCD中,∠C=∠D=90°,點(diǎn)E在邊CD上,∠AEB=90°,求證:=.(探究)(2)如圖②,在四邊形ABCD中,∠C=∠ADC=90°,點(diǎn)E在邊CD上,點(diǎn)F在邊AD的延長(zhǎng)線上,∠FEG=∠AEB=90°,且=,連接BG交CD于點(diǎn)H.求證:BH=GH.(拓展)(3)如圖③,點(diǎn)E在四邊形ABCD內(nèi),∠AEB+∠DEC=180°,且=,過E作EF交AD于點(diǎn)F,若∠EFA=∠AEB,延長(zhǎng)FE交BC于點(diǎn)G.求證:BG=CG.解析:(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽R(shí)t△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點(diǎn)G作GM⊥CD于點(diǎn)M,由(1)可知,證得BC=GM,證明△BCH≌△GMH(AAS),可得出結(jié)論;(3)在EG上取點(diǎn)M,使∠BME=∠AFE,過點(diǎn)C作CN∥BM,交EG的延長(zhǎng)線于點(diǎn)N,則∠N=∠BMG,證明△AEF∽△EBM,由相似三角形的性質(zhì)得出,證明△DEF∽△ECN,則,得出,則BM=CN,證明△BGM≌△CGN(AAS),由全等三角形的性質(zhì)可得出結(jié)論.【詳解】(1)∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽R(shí)t△EBC,∴;(2)如圖1,過點(diǎn)G作GM⊥CD于點(diǎn)M,同(1)的理由可知:,∵,,∴,∴CB=GM,在△BCH和△GMH中,,∴△BCH≌△GMH(AAS),∴BH=GH;(3)證明:如圖2,在EG上取點(diǎn)M,使∠BME=∠AFE,過點(diǎn)C作CN∥BM,交EG的延長(zhǎng)線于點(diǎn)N,則∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,在△BGM和△CGN中,,∴△BGM≌△CGN(AAS),∴BG=CG.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì)等知識(shí),熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.18.(證明體驗(yàn))(1)如圖1,為的角平分線,,點(diǎn)E在上,.求證:平分.(思考探究)(2)如圖2,在(1)的條件下,F(xiàn)為上一點(diǎn),連結(jié)交于點(diǎn)G.若,,,求的長(zhǎng).(拓展延伸)(3)如圖3,在四邊形中,對(duì)角線平分,點(diǎn)E在上,.若,求的長(zhǎng).解析:(1)見解析;(2);(3)【分析】(1)根據(jù)SAS證明,進(jìn)而即可得到結(jié)論;(2)先證明,得,進(jìn)而即可求解;(3)在上取一點(diǎn)F,使得,連結(jié),可得,從而得,可得,,最后證明,即可求解.【詳解】解:(1)∵平分,∴,∵,∴,∴,∴,∴,即平分;(2)∵,∴,∵,∴,∴.∵,∴.∵,∴;(3)如圖,在上取一點(diǎn)F,使得,連結(jié).∵平分,∴∵,∴,∴.∵,∴.∵,∴,∴.∵,∴.∵,又∵,∴∴,∴,∴.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論