版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省海安市八校2026屆數(shù)學九上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.的直徑為,點與點的距離為,點的位置()A.在⊙O外 B.在⊙O上 C.在⊙O內(nèi) D.不能確定2.下列一元二次方程中有兩個相等實數(shù)根的是()A.2x2-6x+1=0 B.3x2-x-5=0 C.x2+x=0 D.x2-4x+4=03.二次函數(shù)經(jīng)過平移后得到二次函數(shù),則平移方法可為()A.向左平移1個單位,向上平移1個單位B.向左平移1個單位,向下平移1個單位C.向右平移1個單位,向下平移1個單位D.向右平移1個單位,向上平移1個單位4.如圖,四邊形與四邊形是位似圖形,則位似中心是()A.點 B.點 C.點 D.點5.下列說法中,正確的個數(shù)()①位似圖形都相似:②兩個等邊三角形一定是位似圖形;③兩個相似多邊形的面積比為5:1.則周長的比為5:1;④兩個大小不相等的圓一定是位似圖形.A.1個 B.2個 C.3個 D.4個6.已知m是方程的一個根,則代數(shù)式的值等于()A.2005 B.2006 C.2007 D.20087.若點P(﹣m,﹣3)在第四象限,則m滿足()A.m>3 B.0<m≤3 C.m<0 D.m<0或m>38.下列事件是必然事件的()A.拋擲一枚硬幣,四次中有兩次正面朝上B.打開電視體育頻道,正在播放NBA球賽C.射擊運動員射擊一次,命中十環(huán)D.若a是實數(shù),則|a|≥09.一個長方形的面積為,且一邊長為,則另一邊的長為()A. B. C. D.10.如圖,拋物線與軸交于點,頂點坐標為,與軸的交點在、之間(包含端點).有下列結論:①當時,;②;③;④.其中正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,⊙O的半徑為2,弦BC=2,點A是優(yōu)弧BC上一動點(不包括端點),△ABC的高BD、CE相交于點F,連結ED.下列四個結論:①∠A始終為60°;②當∠ABC=45°時,AE=EF;③當△ABC為銳角三角形時,ED=;④線段ED的垂直平分線必平分弦BC.其中正確的結論是_____.(把你認為正確結論的序號都填上)12.若點P(3,1)與點Q關于原點對稱,則點Q的坐標是___________.13.已知圓錐的底面半徑為3,母線長為7,則圓錐的側面積是_____.14.已知點,在二次函數(shù)的圖象上,若,則__________.(填“”“”“”)15.如圖,直線與雙曲線交于點,點是直線上一動點,且點在第二象限.連接并延長交雙曲線與點.過點作軸,垂足為點.過點作軸,垂足為,若點的坐標為,點的坐標為,設的面積為的面積為,當時,點的橫坐標的取值范圍為_________.16.要使二次根式有意義,則的取值范圍是________.17.二次函數(shù)y=3(x+2)的頂點坐標______.18.若點C是線段AB的黃金分割點且AC>BC,則AC=_____AB(用含無理數(shù)式子表示).三、解答題(共66分)19.(10分)解答下列各題:(1)計算:2cos31°﹣tan45°﹣;(2)解方程:x2﹣11x+9=1.20.(6分)(1)解方程:;(2)圖①②均為7×6的正方形網(wǎng)絡,點A,B,C在格點上;(a)在圖①中確定格點D,并畫出以A、B、C、D為頂點的四邊形,使其為軸對稱圖形(畫一個即可);(b)在圖②中確定格點E,并畫出以A、B、C、E為頂點的四邊形,使其為中心對稱圖形(畫一個即可).21.(6分)如圖,拋物線經(jīng)過點A(1,0),B(5,0),C(0,)三點,頂點為D,設點E(x,y)是拋物線上一動點,且在x軸下方.(1)求拋物線的解析式;(2)當點E(x,y)運動時,試求三角形OEB的面積S與x之間的函數(shù)關系式,并求出面積S的最大值?(3)在y軸上確定一點M,使點M到D、B兩點距離之和d=MD+MB最小,求點M的坐標.22.(8分)如圖,在下列(邊長為1)的網(wǎng)格中,已知的三個頂點,,在格點上,請分別按不同要求在網(wǎng)格中描出一個點,并寫出點的坐標.(1)經(jīng)過,,三點有一條拋物線,請在圖1中描出點,使點落在格點上,同時也落在這條拋物線上;則點的坐標為______;(2)經(jīng)過,,三點有一個圓,請用無刻度的直尺在圖2中畫出圓心;則點的坐標為______.23.(8分)如圖,有四張背面相同的紙牌A、B、C、D,其正面分別畫有四個不同的圖形,小明將這四張紙牌背面朝上洗勻后隨機摸出一張,放回后洗勻再隨機摸出一張.(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結果(紙牌用A、B、C、D表示);(2)求兩次摸出的牌面圖形既是中心對稱圖形又是軸對稱圖形的概率.24.(8分)如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.(1)求一次函數(shù)的表達式;(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.25.(10分)如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連結AC,CE.(1)求證:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的長.26.(10分)如圖,在△ABC中,∠BAC=90°,AD是BC邊上的高,E是BC邊上的一個動點(不與B,C重合),EF⊥AB,EG⊥AC,垂足分別為F,G.(1)求證:;(2)FD與DG是否垂直?若垂直,請給出證明;若不垂直,請說明理由;(3)當?shù)闹禐槎嗌贂r,△FDG為等腰直角三角形?
參考答案一、選擇題(每小題3分,共30分)1、A【分析】由⊙O的直徑為15cm,O點與P點的距離為8cm,根據(jù)點與圓心的距離與半徑的大小關系,即可求得答案.【詳解】∵⊙O的直徑為15cm,∴⊙O的半徑為7.5cm,∵O點與P點的距離為8cm,∴點P在⊙O外.故選A.此題考查了點與圓的位置關系.注意點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內(nèi).2、D【解析】試題分析:選項A,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,即可得該方程有兩個不相等的實數(shù)根;選項B△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,即可得該方程有兩個不相等的實數(shù)根;選項C,△=b2﹣4ac=12﹣4×1×0=1>0,即可得該方程有兩個不相等的實數(shù)根;選項D,△=b2﹣4ac=(﹣4)2﹣4×1×4=0,即可得該方程有兩個相等的實數(shù)根.故選D.考點:根的判別式.3、D【分析】解答本題可根據(jù)二次函數(shù)平移的特征,左右平移自變量x加減(左加右減),上下平移y加減(下加上減),據(jù)此便能得出答案.【詳解】由得平移方法可為向右平移1個單位,向上平移1個單位故答案為:D.本題考查了二次函數(shù)的平移問題,掌握次函數(shù)的平移特征是解題的關鍵.4、B【分析】根據(jù)位似圖形的定義:如果兩個圖形不僅是相似圖形,而且每組對應點的連線交于一點,對應邊互相平行或在一條直線上,那么這兩個圖形叫做位似圖形,這個點叫做位似中心,判斷即可.【詳解】解:由圖可知,對應邊AG與CE的延長線交于點B,∴點B為位似中心故選B.此題考查的是找位似圖形的位似中心,掌握位似圖形的定義是解決此題的關鍵.5、B【分析】根據(jù)位似圖形的定義(如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.)分別對①②④進行判斷,根據(jù)相似多邊形的面積比等于相似比的平方,周長比等于相似比對③進行判斷.【詳解】解:①位似圖形都相似,故該選項正確;②兩個等邊三角形不一定是位似圖形,故該選項錯誤;③兩個相似多邊形的面積比為5:1.則周長的比為,故該選項錯誤;④兩個大小不相等的圓一定是位似圖形,故該選項正確.正確的是①和④,有兩個,故選:B本題考查的是位似圖形、相似多邊形性質,掌握位似圖形的定義、相似多邊形的性質定理是解決此題的關鍵.6、D【分析】由m是方程x2-2006x+1=0的一個根,將x=m代入方程,得到關于m的等式,變形后代入所求式子中計算,即可求出值.【詳解】解:∵m是方程x2-2006x+1=0的一個根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m?1,則=====2006+2=2008故選:D.此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.7、C【分析】根據(jù)第四象限內(nèi)點的特點,橫坐標是正數(shù),列出不等式求解即可.【詳解】解:根據(jù)第四象限的點的橫坐標是正數(shù),可得﹣m>1,解得m<1.故選:C.本題考查平面直角坐標系中各象限內(nèi)點的坐標符號,關鍵是掌握四個象限內(nèi)點的坐標符號.8、D.【解析】試題解析:A、是隨機事件,不符合題意;B、是隨機事件,不符合題意;==C、是隨機事件,不符合題意;D、是必然事件,符合題意.故選D.考點:隨機事件.9、A【分析】根據(jù)長方形的面積公式結合多項式除以多項式運算法則解題即可.【詳解】長方形的面積為,且一邊長為,另一邊的長為故選:A.本題考查多項式除以單項式、長方形的面積等知識,是常見考點,難度較易,掌握相關知識是解題關鍵.10、C【分析】①由拋物線的頂點坐標的橫坐標可得出拋物線的對稱軸為x=1,結合拋物線的對稱性及點A的坐標,可得出點B的坐標,由點B的坐標即可斷定①正確;②由拋物線的開口向下可得出a<1,結合拋物線對稱軸為x=-=1,可得出b=-2a,將b=-2a代入2a+b中,結合a<1即可得出②不正確;③由拋物線與y軸的交點的范圍可得出c的取值范圍,將(-1,1)代入拋物線解析式中,再結合b=-2a即可得出a的取值范圍,從而斷定③正確;④結合拋物線的頂點坐標的縱坐標為,結合a的取值范圍以及c的取值范圍即可得出n的范圍,從而斷定④正確.綜上所述,即可得出結論.【詳解】解:①由拋物線的對稱性可知:
拋物線與x軸的另一交點橫坐標為1×2-(-1)=2,
即點B的坐標為(2,1),
∴當x=2時,y=1,①正確;
②∵拋物線開口向下,
∴a<1.
∵拋物線的頂點坐標為(1,n),
∴拋物線的對稱軸為x=-=1,
∴b=-2a,
2a+b=a<1,②不正確;
③∵拋物線與y軸的交點在(1,2)、(1,2)之間(包含端點),
∴2≤c≤2.
令x=-1,則有a-b+c=1,
又∵b=-2a,
∴2a=-c,即-2≤2a≤-2,
解得:-1≤a≤-,③正確;
④∵拋物線的頂點坐標為,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,
∴n=c-a,≤n≤4,④正確.
綜上可知:正確的結論為①③④.
故選C.本題考查了二次函數(shù)圖象與系數(shù)的關系,解決該題型題目時,利用二次函數(shù)的系數(shù)表示出來拋物線的頂點坐標是關鍵.二、填空題(每小題3分,共24分)11、①②③④【分析】①延長CO交⊙O于點G,如圖1.在Rt△BGC中,運用三角函數(shù)就可解決問題;②只需證到△BEF≌△CEA即可;③易證△AEC∽△ADB,則,從而可證到△AED∽△ACB,則有.由∠A=60°可得到,進而可得到ED=;④取BC中點H,連接EH、DH,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得EH=DH=BC,所以線段ED的垂直平分線必平分弦BC.【詳解】解:①延長CO交⊙O于點G,如圖1.則有∠BGC=∠BAC.∵CG為⊙O的直徑,∴∠CBG=90°.∴sin∠BGC=.∴∠BGC=60°.∴∠BAC=60°.故①正確.②如圖2,∵∠ABC=25°,CE⊥AB,即∠BEC=90°,∴∠ECB=25°=∠EBC.∴EB=EC.∵CE⊥AB,BD⊥AC,∴∠BEC=∠BDC=90°.∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°.∵∠EFB=∠DFC,∴∠EBF=∠DCF.在△BEF和△CEA中,,∴△BEF≌△CEA.∴AE=EF.故②正確.③如圖3,∵∠AEC=∠ADB=90°,∠A=∠A,∴△AEC∽△ADB.∴.∵∠A=∠A,∴△AED∽△ACB.∴.∵cosA==cos60°=,∴.∴ED=BC=.故③正確.④取BC中點H,連接EH、DH,如圖3、圖2.∵∠BEC=∠CDB=90°,點H為BC的中點,∴EH=DH=BC.∴點H在線段DE的垂直平分線上,即線段ED的垂直平分線平分弦BC.故④正確.故答案為①②③④.本題考查了圓周角定理、銳角三角函數(shù)的定義、特殊角的三角函數(shù)值、全等三角形的判定與性質、相似三角形的判定與性質、直角三角形斜邊上的中線等于斜邊的一半、到線段兩個端點距離相等的點在線段的垂直平分線上等知識,綜合性比較強,是一道好題.12、(–3,–1)【分析】根據(jù)關于原點對稱的點的規(guī)律:縱橫坐標均互為相反數(shù)解答即可.【詳解】根據(jù)關于原點對稱的點的坐標的特點,可得:點P(3,1)關于原點過對稱的點Q的坐標是(–3,–1).故答案為:(–3,–1).本題主要考查了關于原點對稱的點的坐標特點,解題時根據(jù)兩個點關于原點對稱時,它們的同名坐標互為相反數(shù)可直接得到答案,本題屬于基礎題,難度不大,注意平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(–x,–y),即關于原點的對稱點,橫縱坐標都變成相反數(shù).13、21π.【分析】利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】解:圓錐的側面積=×2π×3×7=21π.故答案為21π.本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.14、【解析】拋物線的對稱軸為:x=1,∴當x>1時,y隨x的增大而增大.∴若x1>x2>1
時,y1>y2
.故答案為>15、-3<x<-1【分析】根據(jù)點A的坐標求出中k,再根據(jù)點B在此圖象上求出點B的橫坐標m,根據(jù)結合圖象即可得到答案.【詳解】∵A(-1,3)在上,∴k=-3,∵B(m,1)在上,∴m=-3,由圖象可知:當時,點P在線段AB上,∴點P的橫坐標x的取值范圍是-3<x<-1,故答案為:-3<x<-1.此題考查一次函數(shù)與反比例函數(shù)交點問題,反比例函數(shù)解析式的求法,正確理解題意是解題的關鍵.16、x≥1【分析】根據(jù)二次根式被開方數(shù)為非負數(shù)進行求解.【詳解】由題意知,,解得,x≥1,故答案為:x≥1.本題考查二次根式有意義的條件,二次根式中的被開方數(shù)是非負數(shù).17、(-2,0);【分析】由二次函數(shù)的頂點式,即可得到答案.【詳解】解:二次函數(shù)y=3(x+2)的頂點坐標是(,0);故答案為:(,0);本題考查了二次函數(shù)的性質,解題的關鍵是熟練掌握二次函數(shù)的頂點坐標.18、【分析】直接利用黃金分割的定義求解.【詳解】解:∵點C是線段AB的黃金分割點且AC>BC,∴AC=AB.故答案為:.本題考查了黃金分割的定義,點C是線段AB的黃金分割點且AC>BC,則,正確理解黃金分割的定義是解題的關鍵.三、解答題(共66分)19、(1)1;(2)x1=1,x2=2.【分析】(1)利用特殊角的三角函數(shù)值得到原式=2×﹣1﹣(﹣1),然后進行二次根式的混合運算;(2)利用因式分解法解方程.【詳解】(1)原式=2×﹣1﹣(﹣1)=﹣1﹣+1=1;(2)(x﹣1)(x﹣2)=1,x﹣1=1或x﹣2=1,∴方程的解為x1=1,x2=2.此題主要考查銳角三角函數(shù)相關計算以及一元二次方程的求解,熟練掌握,即可解題.20、(1)x=4.5;(2)(a)見解析;(b)見解析【分析】(1)化分式方程為整式方程,然后解方程,注意要驗根;(2)可畫出一個等腰梯形,則是軸對稱圖形;(3)畫一個矩形,則是中心對稱圖形.【詳解】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;經(jīng)檢驗,x=4.5是原方程的解;(2)如圖①所示:等腰梯形ABCD為軸對稱圖形;;(3)如圖②所示:矩形ABDC為中心對稱圖形;.此題主要考查分式方程及方格的作圖,解題的關鍵是熟知分式方程的解法及軸對稱圖形與中心對稱圖形的特點.21、(1)y=x2﹣4x+;(2)S=﹣(x﹣3)2+(1<x<1),當x=3時,S有最大值;(3)(0,﹣)【分析】(1)設出解析式,由待定系數(shù)法可得出結論;(2)點E在拋物線上,用x去表示y,結合三角形面積公式即可得出三角形OEB的面積S與x之間的函數(shù)關系式,再由E點在x軸下方,得出1<x<1,將三角形OEB的面積S與x之間的函數(shù)關系式配方,即可得出最值;(3)找出D點關于y軸對稱的對稱點D′,結合三角形內(nèi)兩邊之和大于第三邊,即可確定當MD+MB最小時M點的坐標.【詳解】解:(1)設拋物線解析式為y=ax2+bx+c,則,解得:.故拋物線解析式為y=x2﹣4x+.(2)過點E作EF⊥x軸,垂足為點F,如圖1所示.E點坐標為(x,x2﹣4x+),F(xiàn)點的坐標為(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵點E(x,y)是拋物線上一動點,且在x軸下方,∴1<x<1.三角形OEB的面積S=OB?EF=×1×(﹣x2+4x﹣)=﹣(x﹣3)2+(1<x<1=.當x=3時,S有最大值.(3)作點D關于y軸的對稱點D′,連接BD′,如圖2所示.∵拋物線解析式為y=x2﹣4x+=(x﹣3)2﹣,∴D點的坐標為(3,﹣),∴D′點的坐標為(﹣3,﹣).由對稱的特性可知,MD=MD′,∴MB+MD=MB+MD′,當B、M、D′三點共線時,MB+MD′最?。O直線BD′的解析式為y=kx+b,則,解得:,∴直線BD′的解析式為y=x﹣.當x=0時,y=﹣,∴點M的坐標為(0,﹣).本題考查了待定系數(shù)法求二次函數(shù)和一次函數(shù)解析式、軸對稱的性質、利用二次函數(shù)求最值等知識.解題的關鍵是:(1)能夠熟練運用待定系數(shù)法求解析式;(2)利用三角形面積公式找出三角形面積的解析式,再去配方求最值;(3)利用軸對稱的性質確定M點的位置.22、(1);(2)答案見解析,.【分析】(1)拋物線的對稱軸在BC的中垂線上,則點D、A關于函數(shù)對稱軸對稱,即可求解;(2)AC中垂線的表達式為:y=x,BC的中垂線為:x=,則圓心E為:(,).【詳解】解:(1)拋物線的對稱軸在BC的中垂線上,則點D、A關于函數(shù)對稱軸對稱,
故點D(3,2),
故答案為:(3,2);(2)AB中垂線的表達式為:y=x,BC的中垂線為:x=,則圓心E為:(,).作圖如下:本題考查的是二次函數(shù)綜合運用,圓的基本性質,創(chuàng)新作圖,求出圓心的坐標是解題的關鍵.23、(1)見解析;(2)【分析】(1)用列表法或畫出樹狀圖分析數(shù)據(jù)、列出可能的情況即可.(2)A、B、D既是軸對稱圖形,也是中心對稱圖形,C是軸對稱圖形,不是中心對稱圖形.列舉出所有情況,讓兩次摸牌的牌面圖形既是中心對稱圖形又是軸對稱圖形的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】(1)列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)(2)從表中可以得到,兩次摸牌所有可能出現(xiàn)的結果共有16種,其中既是中心對稱圖形又是軸對稱圖形的有9種.故所求概率是.考點:1.列表法與樹狀圖法;2.軸對稱圖形;3.中心對稱圖形.24、(1);(2)1或9.【解析】試題分析:(1)把A(-2,b)的坐標分別代入一次函數(shù)和反比例函數(shù)表達式,求得k、b的值,即可得一次函數(shù)的解析式;(2)直線AB向下平移m(m>0)個單位長度后,直線AB對應的函數(shù)表達式為y=x+5-m,根據(jù)平移后的圖象與反比例函數(shù)的圖象有且只有一個公共點,把兩個解析式聯(lián)立得方程組,解方程組得一個一元二次方程,令△=0,即可求得m的值.試題解析:(1)根據(jù)題意,把A(-2,b)的坐標分別代入一次函數(shù)和反比例函數(shù)表達式,得,解得,所以一次函數(shù)的表達式為y=x+5.(2)將直線AB向下平移m(m>0)個單位長度后,直線AB對應的函數(shù)表達式為y=x+5-m.由得,x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,解得m=1或9.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題,求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解.25、(1)見解析(2)【分析】(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質,可證得AD=AB,即可得:∠B=∠D;(2)首先設
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年監(jiān)理工程師考試《建設工程監(jiān)理案例分析 (交通運輸工程)》真題及答案
- 單招對數(shù)考試題目及答案
- 河南省高考題目及答案
- 舞蹈學的考試題目及答案
- 山西晉城單招題目及答案
- 辦公室人力資源配置制度
- 鋼管架搭設使用扣件生產(chǎn)制度
- 酒店銷售部部門制度
- 英語考試卷子題目及答案
- 診所醫(yī)務人員醫(yī)德醫(yī)風規(guī)范制度
- (15)普通高中美術課程標準日常修訂版(2017年版2025年修訂)
- 四年級數(shù)學除法三位數(shù)除以兩位數(shù)100道題 整除 帶答案
- 村委會 工作總結
- 廠房以租代售合同范本
- 2025年“漂亮飯”社媒觀察報告-藝恩
- 《TCEC1742018分布式儲能系統(tǒng)遠程集中監(jiān)控技術規(guī)范》
- 護理急診進修匯報
- SOAP病歷書寫課件
- 2025年時事政治考試題庫及參考答案(100題)
- 2025年三年級語文上冊期末測試卷:成語接龍競賽訓練試題
- 縫紉工作業(yè)指導書
評論
0/150
提交評論