版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
青島智榮北校七年級(jí)下冊(cè)數(shù)學(xué)期末試卷測(cè)試卷(含答案解析)一、解答題1.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問(wèn)∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請(qǐng)寫出你的猜想,并加以證明.2.已知,定點(diǎn),分別在直線,上,在平行線,之間有一動(dòng)點(diǎn).(1)如圖1所示時(shí),試問(wèn),,滿足怎樣的數(shù)量關(guān)系?并說(shuō)明理由.(2)除了(1)的結(jié)論外,試問(wèn),,還可能滿足怎樣的數(shù)量關(guān)系?請(qǐng)畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)3.如圖1,MN∥PQ,點(diǎn)C、B分別在直線MN、PQ上,點(diǎn)A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點(diǎn)E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).4.已知,如圖1,射線PE分別與直線AB,CD相交于E、F兩點(diǎn),∠PFD的平分線與直線AB相交于點(diǎn)M,射線PM交CD于點(diǎn)N,設(shè)∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α=,β=;直線AB與CD的位置關(guān)系是;(2)如圖2,若點(diǎn)G、H分別在射線MA和線段MF上,且∠MGH=∠PNF,試找出∠FMN與∠GHF之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;(3)若將圖中的射線PM繞著端點(diǎn)P逆時(shí)針?lè)较蛐D(zhuǎn)(如圖3),分別與AB、CD相交于點(diǎn)M1和點(diǎn)N1時(shí),作∠PM1B的角平分線M1Q與射線FM相交于點(diǎn)Q,問(wèn)在旋轉(zhuǎn)的過(guò)程中的值是否改變?若不變,請(qǐng)求出其值;若變化,請(qǐng)說(shuō)明理由.5.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫出答案).二、解答題6.如圖,以直角三角形的直角頂點(diǎn)為原點(diǎn),以、所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn),滿足.(1)點(diǎn)的坐標(biāo)為_(kāi)_____;點(diǎn)的坐標(biāo)為_(kāi)_____.(2)如圖1,已知坐標(biāo)軸上有兩動(dòng)點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿軸正方向移動(dòng),點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為.問(wèn):是否存在這樣的,使?若存在,請(qǐng)求出的值:若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,過(guò)作,作交于點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),連交于點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動(dòng)的過(guò)程中,的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值:若變化,請(qǐng)說(shuō)明理由.7.已知,點(diǎn)為平面內(nèi)一點(diǎn),于.(1)如圖1,點(diǎn)在兩條平行線外,則與之間的數(shù)量關(guān)系為_(kāi)_____;(2)點(diǎn)在兩條平行線之間,過(guò)點(diǎn)作于點(diǎn).①如圖2,說(shuō)明成立的理由;②如圖3,平分交于點(diǎn)平分交于點(diǎn).若,求的度數(shù).8.為了安全起見(jiàn)在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈射線從開(kāi)始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射線從開(kāi)始順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交又照射巡視.若燈轉(zhuǎn)動(dòng)的速度是每秒2度,燈轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即,且.(1)填空:_________;(2)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射線才開(kāi)始轉(zhuǎn)動(dòng),在燈射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射線到達(dá)之前.若射出的光束交于點(diǎn),過(guò)作交于點(diǎn),且,則在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄颗c的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說(shuō)明理由.9.如圖1,E點(diǎn)在BC上,∠A=∠D,AB∥CD.(1)直接寫出∠ACB和∠BED的數(shù)量關(guān)系;(2)如圖2,BG平分∠ABE,與∠CDE的鄰補(bǔ)角∠EDF的平分線交于H點(diǎn).若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不變,如圖3,BM平分∠ABE的鄰補(bǔ)角∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不變,請(qǐng)求值;若改變,請(qǐng)說(shuō)理由.10.如圖1,,E是、之間的一點(diǎn).(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點(diǎn)F.直接寫出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點(diǎn)G得圖3,若的余角等于的補(bǔ)角,求的大小.三、解答題11.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點(diǎn)D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過(guò)程中BD所在的直線與EF所在的直線交于點(diǎn)P.問(wèn)∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點(diǎn)P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).12.如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1.(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請(qǐng)寫出∠A與∠An的數(shù)量關(guān)系______;(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=______.(4)如圖3,若E為BA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q-∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫出正確的結(jié)論,并求出其值.13.在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想和的數(shù)量關(guān)系,并說(shuō)明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)14.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫出的度數(shù).15.如圖,△ABC和△ADE有公共頂點(diǎn)A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過(guò)AC上一點(diǎn)O作OG⊥AC,分別交AB、AD、AE于點(diǎn)G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長(zhǎng);②如圖2,∠AFO的平分線和∠AOF的平分線交于點(diǎn)M,∠FHD的平分線和∠OGB的平分線交于點(diǎn)N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請(qǐng)說(shuō)明理由.【參考答案】一、解答題1.(1)見(jiàn)解析;(2),證明見(jiàn)解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過(guò)點(diǎn)作,過(guò)點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解析:(1)見(jiàn)解析;(2),證明見(jiàn)解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過(guò)點(diǎn)作,過(guò)點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過(guò)點(diǎn)作,過(guò)點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.2.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點(diǎn)是平行線,之間有一動(dòng)點(diǎn),因此需要對(duì)點(diǎn)的位置進(jìn)行分類討論:如圖1,當(dāng)點(diǎn)在的左側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點(diǎn)在的左側(cè)時(shí),;當(dāng)點(diǎn)在的右側(cè)時(shí),可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過(guò)點(diǎn)作,,,,,,;(2)如圖2,當(dāng)點(diǎn)在的右側(cè)時(shí),,,滿足數(shù)量關(guān)系為:;過(guò)點(diǎn)作,,,,,,;(3)①如圖3,若當(dāng)點(diǎn)在的左側(cè)時(shí),,,,分別平分和,,,;如圖4,當(dāng)點(diǎn)在的右側(cè)時(shí),,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識(shí)點(diǎn),作輔助線后能求出各個(gè)角的度數(shù),是解此題的關(guān)鍵.3.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)120°.【分析】(1)過(guò)點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)解析:(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)120°.【分析】(1)過(guò)點(diǎn)A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補(bǔ)得到∴、∠CAB+∠ACD=180°,由鄰補(bǔ)角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過(guò)點(diǎn)A作AD∥MN,∵M(jìn)N∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準(zhǔn)確的推導(dǎo)是解決本題的關(guān)鍵.4.(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計(jì)算和的值,再根據(jù)內(nèi)錯(cuò)角相等可證;(2)先根據(jù)內(nèi)錯(cuò)角相等證,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出;(3)作的平分線交的延長(zhǎng)線于解析:(1)20,20,;(2);(3)的值不變,【分析】(1)根據(jù),即可計(jì)算和的值,再根據(jù)內(nèi)錯(cuò)角相等可證;(2)先根據(jù)內(nèi)錯(cuò)角相等證,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出;(3)作的平分線交的延長(zhǎng)線于,先根據(jù)同位角相等證,得,設(shè),,得出,即可得.【詳解】解:(1),,,,,,,;故答案為:20、20,;(2);理由:由(1)得,,,,,,,;(3)的值不變,;理由:如圖3中,作的平分線交的延長(zhǎng)線于,,,,,,,,設(shè),,則有:,可得,,.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識(shí)是解題的關(guān)鍵.5.(1)30°;(2)∠DEF+2∠CDF=150°,理由見(jiàn)解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過(guò)點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見(jiàn)解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過(guò)點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過(guò)點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.二、解答題6.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關(guān)于t的方程,求得t的值即可;(3)過(guò)H點(diǎn)作AC的平行線,交x軸于P,先判定OG∥AC,再根據(jù)角的和差關(guān)系以及平行線的性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進(jìn)行計(jì)算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點(diǎn)從C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí)間為2秒,Q點(diǎn)從O點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí)間為2秒,∴0<t≤2時(shí),點(diǎn)Q在線段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結(jié)論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過(guò)H點(diǎn)作AC的平行線,交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點(diǎn)睛】本題主要考查三角形綜合題、非負(fù)數(shù)的性質(zhì)、三角形的面積、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題.7.(1)∠A+∠C=90°;(2)①見(jiàn)解析;②105°【分析】(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)①過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解;②先過(guò)點(diǎn)B作BG∥解析:(1)∠A+∠C=90°;(2)①見(jiàn)解析;②105°【分析】(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行證明即可;(2)①過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解;②先過(guò)點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得2α+β+3α+3α+β=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進(jìn)而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【詳解】解:(1)如圖1,AM與BC的交點(diǎn)記作點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)①如圖2,過(guò)點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥DM,∴∠C=∠CBG,∠ABD=∠C;②如圖3,過(guò)點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)的運(yùn)用,解決問(wèn)題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用等角的余角(補(bǔ)角)相等進(jìn)行推導(dǎo).余角和補(bǔ)角計(jì)算的應(yīng)用,常常與等式的性質(zhì)、等量代換相關(guān)聯(lián).解題時(shí)注意方程思想的運(yùn)用.8.(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,解析:(1)72°;(2)30秒或110秒;(3)不變,∠BAC=2∠BCD【分析】(1)根據(jù)∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度數(shù);(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,分兩種情況進(jìn)行討論:當(dāng)0<t<90時(shí),根據(jù)2t=1?(30+t),可得t=30;當(dāng)90<t<150時(shí),根據(jù)1?(30+t)+(2t-180)=180,可得t=110;(3)設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,根據(jù)∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,據(jù)此可得∠BAC和∠BCD關(guān)系不會(huì)變化.【詳解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×=72°,故答案為:72;(2)設(shè)A燈轉(zhuǎn)動(dòng)t秒,兩燈的光束互相平行,①當(dāng)0<t<90時(shí),如圖1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得t=30;②當(dāng)90<t<150時(shí),如圖2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1?(30+t)+(2t-180)=180,解得t=110,綜上所述,當(dāng)t=30秒或110秒時(shí),兩燈的光束互相平行;(3)∠BAC和∠BCD關(guān)系不會(huì)變化.理由:設(shè)燈A射線轉(zhuǎn)動(dòng)時(shí)間為t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD關(guān)系不會(huì)變化.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)以及角的和差關(guān)系的運(yùn)用,解決問(wèn)題的關(guān)鍵是運(yùn)用分類思想進(jìn)行求解,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).9.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長(zhǎng)DE交AB于點(diǎn)F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長(zhǎng)DE交AB于點(diǎn)F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠ACB+∠CEF=180°,由對(duì)頂角相等可得結(jié)論;(2)如圖2,作EMCD,HNCD,根據(jù)ABCD,可得ABEMHNCD,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)∠DEB比∠DHB大60°,列出等式即可求∠DEB的度數(shù);(3)如圖3,過(guò)點(diǎn)E作ESCD,設(shè)直線DF和直線BP相交于點(diǎn)G,根據(jù)平行線的性質(zhì)和角平分線定義可求∠PBM的度數(shù).【詳解】解:(1)如圖1,延長(zhǎng)交于點(diǎn),,,,,,,,故答案為:;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,,解得.的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過(guò)點(diǎn)作,設(shè)直線和直線相交于點(diǎn),平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點(diǎn)睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).10.(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見(jiàn)解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計(jì)算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點(diǎn)F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點(diǎn)G,,,,,.【點(diǎn)睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.三、解答題11.(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點(diǎn)P在直線b的下方時(shí);②當(dāng)交點(diǎn)P在直線a,b之間時(shí);③當(dāng)交點(diǎn)P在直線a的上方時(shí);分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點(diǎn)P在直線a,b之間時(shí);②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí);【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=∠1﹣50°=20°;②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|;【點(diǎn)睛】考查知識(shí)點(diǎn):平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動(dòng)點(diǎn)P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運(yùn)用是解題的突破口.12.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD解析:(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值為定值正確,Q+∠A1=180°.【分析】(1)根據(jù)角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分別平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出規(guī)律;(3)先根據(jù)四邊形內(nèi)角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根據(jù)內(nèi)角與外角的關(guān)系和角平分線的定義得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,從而得出結(jié)論;(4)依然要用三角形的外角性質(zhì)求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形內(nèi)角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的關(guān)系.【詳解】解:(1)當(dāng)∠A為70°時(shí),∵∠ACD-∠ABD=∠A,∴∠ACD-∠ABD=70°,∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線,∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=35°;故答案為:A,70,35;(2)∵A1B、A1C分別平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,∴∠BAC=2∠A1=80°,∴∠A1=40°,同理可得∠A1=2∠A2,即∠BAC=22∠A2=80°,∴∠A2=20°,∴∠A=2n∠An,故答案為:∠A=2∠An.(3)∵∠ABC+∠DCB=360°-(∠A+∠D),∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,∴360°-(α+β)=180°-2∠F,2∠F=∠A+∠D-180°,∴∠F=(∠A+∠D)-90°,∵∠A+∠D=230°,∴∠F=25°;故答案為:25°.(4)①∠Q+∠A1的值為定值正確.∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線∴∠A1=∠A1CD-∠A1BD=∠BAC,∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分線,∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC,∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC,∴∠Q+∠A1=180°.【點(diǎn)睛】本題主要考查三角形的外角性質(zhì)和角平分線的定義的運(yùn)用,根據(jù)推導(dǎo)過(guò)程對(duì)題目的結(jié)果進(jìn)行規(guī)律總結(jié)對(duì)解題比較重要.13.(1)60,30;(2)∠BAD=2∠CDE,證明見(jiàn)解析;(3)成立,∠BAD=2∠CDE,證明見(jiàn)解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見(jiàn)解析;(3)成立,∠BAD=2∠CDE,證明見(jiàn)解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關(guān)角度之間的關(guān)系是解題的關(guān)鍵.14.(1)見(jiàn)解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見(jiàn)解析;(2)①③;(3)∠APB
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 28504.4-2025摻稀土光纖第4部分:摻鉺光纖特性
- 2025年大學(xué)第四學(xué)年(動(dòng)物醫(yī)學(xué))動(dòng)物醫(yī)學(xué)綜合實(shí)訓(xùn)試題及答案
- 2025年高職(工業(yè)機(jī)器人技術(shù))故障排查階段測(cè)試題及答案
- 2026年水利施工(排水管道施工)試題及答案
- 2025年高職(應(yīng)用化工技術(shù))應(yīng)用化工階段測(cè)試試題及答案
- 2025年高職物聯(lián)網(wǎng)工程(傳感器應(yīng)用)試題及答案
- 2025年高職水環(huán)境監(jiān)測(cè)與治理(水環(huán)境監(jiān)測(cè))試題及答案
- 2025年大學(xué)二年級(jí)(土木工程)結(jié)構(gòu)力學(xué)基礎(chǔ)試題及答案
- 2025年中職(模具制造技術(shù))模具零件加工專項(xiàng)測(cè)試試題及答案
- 2025年中職(酒店管理)酒店安全實(shí)訓(xùn)階段測(cè)試題及答案
- 送車免責(zé)合同協(xié)議書模板
- 《macd指標(biāo)詳解》課件
- 天津市-2024年-社區(qū)工作者-上半年筆試真題卷
- GB/T 4074.1-2024繞組線試驗(yàn)方法第1部分:一般規(guī)定
- 復(fù)方蒲公英注射液抗腫瘤作用研究
- 物資、百貨、五金采購(gòu) 投標(biāo)方案(技術(shù)方案)
- 菌種鑒定報(bào)告文檔
- 成都市水功能區(qū)名錄表
- Jira工具操作手冊(cè)
- DL/T 5097-2014 火力發(fā)電廠貯灰場(chǎng)巖土工程勘測(cè)技術(shù)規(guī)程
- 能源費(fèi)用托管型合同能源管理項(xiàng)目
評(píng)論
0/150
提交評(píng)論