版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年果洛藏族自治州瑪多縣中考四模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形2.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.3.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數(shù)有()A.1個B.2個C.3個D.4個4.用教材中的計算器依次按鍵如下,顯示的結果在數(shù)軸上對應點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B5.下面幾何的主視圖是()A. B. C. D.6.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<07.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.8.若一組數(shù)據(jù)2,3,,5,7的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)為()A.2 B.3 C.5 D.79.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.410.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.圖①是一個三角形,分別連接這個三角形的中點得到圖②;再分別連接圖②中間小三角形三邊的中點,得到圖③.按上面的方法繼續(xù)下去,第n個圖形中有_____個三角形(用含字母n的代數(shù)式表示).12.計算:(1)()2=_____;(2)=_____.13.已知一組數(shù)據(jù)﹣3、3,﹣2、1、3、0、4、x的平均數(shù)是1,則眾數(shù)是_____.14.若關于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.15.正多邊形的一個外角是60°,邊長是2,則這個正多邊形的面積為___________.16.如圖,從一個直徑為1m的圓形鐵片中剪出一個圓心角為90°的扇形,再將剪下的扇形圍成一個圓錐,則圓錐的底面半徑為_____m.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,弧CD⊥AB,垂足為H,P為弧AD上一點,連接PA、PB,PB交CD于E.(1)如圖(1)連接PC、CB,求證:∠BCP=∠PED;(2)如圖(2)過點P作⊙O的切線交CD的延長線于點E,過點A向PF引垂線,垂足為G,求證:∠APG=∠F;(3)如圖(3)在圖(2)的條件下,連接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直徑AB.18.(8分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:(1)本次調查的學生有多少人?(2)補全上面的條形統(tǒng)計圖;(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?19.(8分)如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.20.(8分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績如圖所示.根據(jù)圖示填寫下表;
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
高中部
85
100
(2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.21.(8分)如圖1,正方形ABCD的邊長為8,動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,當點E運動到終點C時,點F也停止運動,連接AE交對角線BD于點N,連接EF交BC于點M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點E、F運動過程中,判斷EF與BD的位置關系,并說明理由;(2)在點E、F運動過程中,①判斷AE與AM的數(shù)量關系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請說明理由;(3)如圖2,連接NF,在點E、F運動過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請說明理由.22.(10分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質.小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質進行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質________.23.(12分)計算:()-1+()0+-2cos30°.24.如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉90°,得到△A1B1C1.求點C1在旋轉過程中所經(jīng)過的路徑長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.2、D【解析】
連接AC、CF,根據(jù)正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.3、D【解析】
根據(jù)對頂角的定義,平行線的性質以及正五邊形的內角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內角和為540°,則其內角為108°,而360°并不是108°的整數(shù)倍,不能進行平面鑲嵌,故為假命題;④在同一平面內,垂直于同一條直線的兩條直線平行,故為假命題.故選:D.本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關概念.關鍵是熟悉這些概念,正確判斷.4、A【解析】試題分析:在計算器上依次按鍵轉化為算式為﹣=-1.414…;計算可得結果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸5、B【解析】
主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.6、B【解析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質和圖象7、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.8、C【解析】試題解析:∵這組數(shù)據(jù)的眾數(shù)為7,∴x=7,則這組數(shù)據(jù)按照從小到大的順序排列為:2,3,1,7,7,中位數(shù)為:1.故選C.考點:眾數(shù);中位數(shù).9、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.10、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質,等邊三角形的性質,軸對稱-最短路線問題等知識點的應用,關鍵是找出PD+PE最小時P點的位置.二、填空題(本大題共6個小題,每小題3分,共18分)11、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個數(shù),可以發(fā)現(xiàn):第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去如圖中三角形的個數(shù)為按照這個規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個數(shù),圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;可以發(fā)現(xiàn),第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去1.按照這個規(guī)律,如果設圖形的個數(shù)為n,那么其中三角形的個數(shù)為.故答案為.此題主要考查學生對圖形變化類這個知識點的理解和掌握,解答此類題目的關鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認真思考,歸納總結出規(guī)律,此類題目難度一般偏大,屬于難題.12、【解析】
(1)直接利用分式乘方運算法則計算得出答案;(2)直接利用分式除法運算法則計算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.此題主要考查了分式的乘除法運算,正確掌握運算法則是解題關鍵.13、3【解析】∵-3、3,-2、1、3、0、4、x的平均數(shù)是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一組數(shù)據(jù)-3、3,-2、1、3、0、4、2,∴眾數(shù)是3.故答案是:3.14、﹣2≤a<﹣1.【解析】
先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.本題考查了一元一次不等式組的整數(shù)解的應用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關鍵.15、6【解析】
多邊形的外角和等于360°,因為所給多邊形的每個外角均相等,據(jù)此即可求得正多邊形的邊數(shù),進而求解.【詳解】正多邊形的邊數(shù)是:360°÷60°=6.正六邊形的邊長為2cm,由于正六邊形可分成六個全等的等邊三角形,且等邊三角形的邊長與正六邊形的邊長相等,所以正六邊形的面積.故答案是:.本題考查了正多邊形的外角和以及正多邊形的計算,正六邊形可分成六個全等的等邊三角形,轉化為等邊三角形的計算.16、m.【解析】
利用勾股定理易得扇形的半徑,那么就能求得扇形的弧長,除以2π即為圓錐的底面半徑.【詳解】解:易得扇形的圓心角所對的弦是直徑,∴扇形的半徑為:m,∴扇形的弧長為:=πm,∴圓錐的底面半徑為:π÷2π=m.本題考查:90度的圓周角所對的弦是直徑;圓錐的側面展開圖的弧長等于圓錐的底面周長,解題關鍵是弧長公式.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析;(3)AB=1【解析】
(1)由垂徑定理得出∠CPB=∠BCD,根據(jù)∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得證;(2)連接OP,知OP=OB,先證∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,據(jù)此可得2∠APG=∠F,據(jù)此即可得證;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF,先證∠PAE=∠F,由tan∠PAE=tan∠F得,再證∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,從而得出,即MF=GP,由3PF=5PG即,可設PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,證∠PEM=∠ABP得BP=3k,繼而可得BE=k=2,據(jù)此求得k=2,從而得出AP、BP的長,利用勾股定理可得答案.【詳解】證明:(1)∵AB是⊙O的直徑且AB⊥CD,∴∠CPB=∠BCD,∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,∴∠BCP=∠PED;(2)連接OP,則OP=OB,∴∠OPB=∠OBP,∵PF是⊙O的切線,∴OP⊥PF,則∠OPF=90°,∠FPE=90°﹣∠OPE,∵∠PEF=∠HEB=90°﹣∠OBP,∴∠FPE=∠FEP,∵AB是⊙O的直徑,∴∠APB=90°,∴∠APG+∠FPE=90°,∴2∠APG+2∠FPE=180°,∵∠F+∠FPE+∠PEF=180°,∵∠F+2∠FPE=180°∴2∠APG=∠F,∴∠APG=∠F;(3)連接AE,取AE中點N,連接HN、PN,過點E作EM⊥PF于M,由(2)知∠APB=∠AHE=90°,∵AN=EN,∴A、H、E、P四點共圓,∴∠PAE=∠PHF,∵PH=PF,∴∠PHF=∠F,∴∠PAE=∠F,tan∠PAE=tan∠F,∴,由(2)知∠APB=∠G=∠PME=90°,∴∠GAP=∠MPE,∴sin∠GAP=sin∠MPE,則,∴,∴MF=GP,∵3PF=5PG,∴,設PG=3k,則PF=5k,MF=PG=3k,PM=2k由(2)知∠FPE=∠PEF,∴PF=EF=5k,則EM=4k,∴tan∠PEM=,tan∠F=,∴tan∠PAE=,∵PE=,∴AP=k,∵∠APG+∠EPM=∠EPM+∠PEM=90°,∴∠APG=∠PEM,∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,∴∠APG=∠ABP,∴∠PEM=∠ABP,則tan∠ABP=tan∠PEM,即,∴,則BP=3k,∴BE=k=2,則k=2,∴AP=3、BP=6,根據(jù)勾股定理得,AB=1.本題主要考查圓的綜合問題,解題的關鍵是掌握圓周角定理、四點共圓條件、相似三角形的判定與性質、三角函數(shù)的應用等知識點.18、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】
(1)根據(jù)喜好A口味的牛奶的學生人數(shù)和所占百分比,即可求出本次調查的學生數(shù).(2)用調查總人數(shù)減去A、B、D三種喜好不同口味牛奶的人數(shù),求出喜好C口味牛奶的人數(shù),補全統(tǒng)計圖.再用360°乘以喜好C口味的牛奶人數(shù)所占百分比求出對應中心角度數(shù).(3)用總人數(shù)乘以A、B口味牛奶喜歡人數(shù)所占的百分比得出答案.【詳解】解:(1)本次調查的學生有30÷20%=150人;(2)C類別人數(shù)為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得出必要的信息是解題的關鍵.19、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】
(1)將A(-1,0),B(0,1),C(1,0)三點的坐標代入y=ax2+bx+c,運用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設P點的坐標為(x,-x2-2x+1),E點的坐標為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質可知當x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進而得到P點的坐標.【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設P點的坐標為(x,﹣x2﹣2x+1),E點的坐標為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當x=﹣時,PE最大,△PDE的周長也最大.當x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標為(﹣,)時,△PDE的周長最大.本題是二次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質,二次函數(shù)的性質,三角形的周長,綜合性較強,難度適中.20、(1)
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績好些(3)初中代表隊選手成績較為穩(wěn)定【解析】解:(1)填表如下:
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績好些.∵兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊選手成績較為穩(wěn)定.(1)根據(jù)成績表加以計算可補全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.21、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】
(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當DE=16?8時,△AEM是等邊三角形;(3)設DE=x,過點N作NP⊥AB,反向延長PN交CD于點Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動點E從點D出發(fā),在線段DC上運動,同時點F從點B出發(fā),以相同的速度沿射線AB方向運動,∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煤層氣增產(chǎn)作業(yè)工操作規(guī)范水平考核試卷含答案
- 涂裝工崗前理論知識考核試卷含答案
- 非織造布調漿工安全培訓強化考核試卷含答案
- 鼓類樂器制作工復測強化考核試卷含答案
- 危險廢物處理工操作測試考核試卷含答案
- 水生植物疫病檢疫員崗前可持續(xù)發(fā)展考核試卷含答案
- 房產(chǎn)局的合同范本
- 房子修善合同范本
- 投資劇目合同范本
- 防火閘門合同范本
- 2025中遠海運集團招聘筆試歷年參考題庫附帶答案詳解
- 2025重慶市涪陵區(qū)人民政府江東街道辦事處選聘本土人才5人(公共基礎知識)測試題附答案解析
- GB/T 46476-2025電工鋼帶和鋼片幾何特性的測量方法
- 2025年商洛市中心醫(yī)院招聘(35人)筆試考試備考試題及答案解析
- 2025廣東環(huán)保集團總部招聘一般管理崗位員工9人考試筆試備考試題及答案解析
- 【《寧德時代投資項目財務可行性分析案例報告》16000字】
- 鈴木鎮(zhèn)一音樂教育體系
- 財政政策與貨幣政策課件
- ISO 55001-2025 資產(chǎn)管理-資產(chǎn)管理體系-要求(中文版-翻譯-2025)
- 2025年金屬非金屬礦山提升機操作證考試題及答案
- 2026年郴州職業(yè)技術學院單招職業(yè)技能考試題庫帶答案解析
評論
0/150
提交評論