自貢市重點中學2025年高二上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
自貢市重點中學2025年高二上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
自貢市重點中學2025年高二上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
自貢市重點中學2025年高二上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
自貢市重點中學2025年高二上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

自貢市重點中學2025年高二上數(shù)學期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,則前項的和()A. B.C. D.2.若函數(shù)有零點,則實數(shù)的取值范圍是()A. B.C. D.3.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.4.已知為虛數(shù)單位,復數(shù)是純虛數(shù),則()A. B.4C.3 D.25.王昌齡是盛唐著名的邊塞詩人,被譽為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關(guān).黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要6.若拋物線的焦點與橢圓的下焦點重合,則m的值為()A.4 B.2C. D.7.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.8.已知雙曲線:,直線經(jīng)過點,若直線與雙曲線的右支只有一個交點,則直線的斜率的取值范圍是()A. B.C. D.9.拋物線的焦點到直線的距離()A. B.C.1 D.210.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.11.若將一個橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點恰好是旋轉(zhuǎn)前橢圓的兩焦點,這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.12.過點且與直線垂直的直線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點對稱;②曲線C關(guān)于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;⑤曲線C與曲線D:|x|+|y|=2有4個公共點,這4點構(gòu)成正方形其中正確結(jié)論的個數(shù)是_____14.將全體正整數(shù)排成一個三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個數(shù)為____________.15.已知長方體的棱,則異面直線與所成角的大小是________________.(結(jié)果用反三角函數(shù)值表示)16.若和或都是假命題,則的范圍是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,過點作直線(1)若直線的斜率存在,且與拋物線只有一個公共點,求直線的方程(2)若直線過拋物線的焦點,且交拋物線于兩點,求弦長18.(12分)在等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.19.(12分)如圖所示等腰梯形ABCD中,,,,點E為CD的中點,沿AE將折起,使得點D到達F位置.(1)當時,求證:平面AFC;(2)當時,求二面角的余弦值.20.(12分)已知在公差不為0的等差數(shù)列中,,且構(gòu)成等比數(shù)列的前三項(1)求數(shù)列,的通項公式;(2)設(shè)數(shù)列___________,求數(shù)列的前項和請在①;②;③這三個條件中選擇一個,補充在上面的橫線上,并完成解答21.(12分)已知圓,是圓上一點,過A作直線l交圓C于另一點B,交x軸正半軸于點D,且A為的中點.(1)求圓C在點A處的切線方程;(2)求直線l的方程.22.(10分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用等差數(shù)列下標和性質(zhì)可求得,根據(jù)等差數(shù)列求和公式可求得結(jié)果.【詳解】數(shù)列為等差數(shù)列,,解得:;.故選:D.2、A【解析】設(shè),則函數(shù)有零點轉(zhuǎn)化為函數(shù)的圖象與直線有交點,利用導數(shù)判斷函數(shù)的單調(diào)性,即可求出【詳解】設(shè),定義域為,則,易知為單調(diào)遞增函數(shù),且所以當時,,遞減;當時,,遞增,所以所以,即故選:A【點睛】本題主要考查根據(jù)函數(shù)有零點求參數(shù)的取值范圍,意在考查學生的轉(zhuǎn)化能力,屬于基礎(chǔ)題3、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題4、C【解析】化簡復數(shù)得,由其為純虛數(shù)求參數(shù)a,進而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C5、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰(zhàn)死沙場;即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B6、D【解析】求出橢圓的下焦點,即拋物線的焦點,即可得解.【詳解】解:橢圓的下焦點為,即為拋物線焦點,∴,∴.故選:D.7、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計算公式,即可求得結(jié)果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.8、D【解析】以雙曲線的兩條漸近線作為邊界條件,即可保證直線與雙曲線的右支只有一個交點.【詳解】雙曲線:的兩條漸近線為和兩漸近線的傾斜角分別為和由經(jīng)過點的直線與雙曲線的右支只有一個交點,可知直線的傾斜角取值范圍為,故直線的斜率的取值范圍是故選:D9、B【解析】由拋物線可得焦點坐標,結(jié)合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據(jù)點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.10、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.11、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進而判斷所給命題的真假【詳解】解:因為橢圓短的軸兩頂點恰好是旋轉(zhuǎn)前橢圓的兩焦點,即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:12、C【解析】根據(jù)兩直線垂直時斜率乘積為,可以直接求出所求直線的斜率,再根據(jù)點斜式求出直線方程,最后化成一般式方程即可.【詳解】因為直線的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】直接利用曲線的性質(zhì),對稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據(jù)對稱性,可得公共點為,故曲線C與曲線D有四個交點,這4點構(gòu)成正方形,故⑤正確故答案為:414、【解析】通過觀察、分析、歸納,找出規(guī)律運算求解即可【詳解】前行共有正整數(shù)個,即個,因此第行第個數(shù)是全體正整數(shù)中第個,即為故答案為:15、【解析】建立空間直角坐標系,求出異面直線與的方向向量,再求出兩向量的夾角,進而可得異面直線與所成角的大小【詳解】解:建立如圖所示的空間直角坐標系:在長方體中,,,,,,,,,,異面直線與所成角的大小是故答案為:16、【解析】先由和或都是假命題,求出x的范圍,取交集即可.【詳解】若為假命題,則有或若或是假命題,則所以的范圍是即的范圍是胡答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)8【解析】(1)根據(jù)題意設(shè)直線的方程為,聯(lián)立,消去得,因為只有一個公共點,則求解.(2)拋物線的焦點為,設(shè)直線的方程為,聯(lián)立,消去得,再根據(jù)過拋物線焦點的弦長公式求解.【詳解】(1)設(shè)直線的方程為,聯(lián)立,消去得,則,解得或,∴直線的方程為:或(2)拋物線的焦點為,則直線的方程為,設(shè),聯(lián)立,消去得,∴,∴【點睛】本題主要考查直線與拋物線的位置關(guān)系,還考查了運算求解的能力,屬于中檔題.18、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得數(shù)列的通項公式.(2)令,分和去掉絕對值,根據(jù)等差數(shù)列的求和公式求得.【小問1詳解】設(shè)等差數(shù)列的公差為,∵,,所以,所以,則.【小問2詳解】令,解得,當時,,,當時,.19、(1)證明見解析(2)【解析】(1)結(jié)合線面垂直的判定定理來證得結(jié)論成立.(2)建立空間直角坐標系,利用向量法來求得二面角的大小.【小問1詳解】設(shè),由于四邊形是等腰梯形,是的中點,,所以,所以四邊形是平行四邊形,由于,所以四邊形是菱形,所以,由于,是的中點,所以,由于,所以平面.【小問2詳解】由于,所以三角形、三角形、三角形是等邊三角形,設(shè)是的中點,設(shè),則,所以,所以,由于兩兩垂直.以為空間坐標原點建立如圖所示空間直角坐標系,,,平面的法向量為,設(shè)平面法向量為,則,故可設(shè),由圖可知,二面角為鈍角,設(shè)二面角為,,則.20、(1),(2)答案見解析【解析】(1)設(shè)的公差為,根據(jù)等比中項的性質(zhì)得到,即可求,從而求出的通項公式,所以,即可求出等比數(shù)列的公比,從而求出的通項公式;(2)若選①:則,利用裂項相消法求和即可;若選②:則,根據(jù)等比數(shù)列求和公式計算可得;若選③:則利用分組求和法求和即可;【小問1詳解】解:設(shè)的公差為,成等比數(shù)列,,,解得或,,,即,,的公比,,【小問2詳解】解:若選①:則,;若選②:則,;若選③:則,.21、(1)(2)或【解析】(1)以直線方程的點斜式去求圓C在點A處的切線方程;(2)以A為的中點為突破口,設(shè)點法去求直線l的方程簡單快捷.【小問1詳解】圓可化為,圓心因為直線的斜率為,所以圓C在A點處切線斜率為2,所以切線方程為即.【小問2詳解】由題意設(shè)因為是中點,所以將B代入圓C方程得解得或當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論