Ansys2025全球仿真大會:基于TwinAI及optiSLang的干式變壓器溫升預測模型優(yōu)化_第1頁
Ansys2025全球仿真大會:基于TwinAI及optiSLang的干式變壓器溫升預測模型優(yōu)化_第2頁
Ansys2025全球仿真大會:基于TwinAI及optiSLang的干式變壓器溫升預測模型優(yōu)化_第3頁
Ansys2025全球仿真大會:基于TwinAI及optiSLang的干式變壓器溫升預測模型優(yōu)化_第4頁
Ansys2025全球仿真大會:基于TwinAI及optiSLang的干式變壓器溫升預測模型優(yōu)化_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

Hitachi

Energy基于TwinAI及optiSLang的干式變壓器溫升預測模型優(yōu)化JiamingZHANGSep.-2025Internal?Hitachi

EnergyLtd2025.

Allrightsreservedu

ResearchObjectsu

Softwaredescriptionu

Preliminary

results

HighVoltageWindings

LowVoltageWindingsu

Conclusions2

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedContentsHITACHlu

ResearchObjectsu

Softwaredescriptionu

Preliminary

results

HighVoltageWindings

LowVoltageWindingsu

Conclusions3

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedContentsHITACHlElectricaldesignElectromagnetic

loss

Safetyconcern

Lifeofthe

productTemperature

riseResearchObjects4

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedDesign

margin

HITACHlHotair

outCoolair

inHeat

upEfficiency

Accuracyl

Higherefficiency

Costsavingofthe

manhoursl

More

accurate

results

Less

design

marginICostsaving

ofthe

materialElectromagnetic

lossTemperature

riseResearchObjects5

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedThermalcalculationHITACHlBack

upHotair

outCoolair

inHeat

up

Objects:

HVWindings:

Temperature

rise

LVWindings:

Temperature

rise

BoundaryConditions:

Power

Rating:

200~3800

kVA

Electrical

Height:

600~1500

mm

Enclosure

Type/Cooling

method:

IP00/AN

WindingTechnology:

Cast(HV),

OW(LV)

Construction

Type:

Disk(HV),

Foil(LV)ResearchObjects6

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedHITACHlu

ResearchObjectsu

Softwaredescriptionu

Preliminary

results

HighVoltageWindings

LowVoltageWindingsu

Conclusions7

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedContentsHITACHl

Target:

Based

onthesimulation

results,the

metamodels

aregeneratedfocusingon

the

prediction

of

some

thermal

behaviors.

Inthis

project,thetemperature

rise

are

researched

at

HV

and

LVwindingsofthetransformers.

Tool:

optiSLang

is

usedtoanalyzethedatabaseandtrainthe

metamodel.

TwinAI

is

usedtooptimizethetool

in

higheraccuracy.

optiSLang

isanANSYStoolcontributingonthe

sensitivity

analysis

andthe

guidance

of

design

work.SensitivityAnalyzation

DesignOptimizationSoftwaredescription8

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedSensitivityAnalyze

QualificationOptimizationDoERandom

Sampling

CertaintySamplingMetamodel

PredictionHITACHlSoftwaredescription_optiSLangHmACHDoERandomSampling

CertaintySamplingSensitivityAnalyze

QualificationMetamodelPrediction9

Internal?Hitachi

EnergyLtd2025.

Allrightsreserved10

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedSoftwaredescription_TwinAIHITACHlu

ResearchObjectsu

Softwaredescriptionu

Preliminary

results

HighVoltageWindings

LowVoltageWindingsu

Conclusions11

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedContentsHITACHlResults-

HVWindings_optiSLang

results

HmACHi12

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedTwinAI

optimization_HVwinding

HACHi13

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedOptimizedresultoptiSLangresultTest

resultTest

resultVsVsResults-

HVWindingsMetamodelvsTests2.83

K2.38

K0.25

KHITACHlOptimizedvsTestsMetamodelvsTestsOptimizedvsTestsInternal?Hitachi

EnergyLtd2025.

AllrightsreservedCFDvsTests14Results-

LVWindings_optiSLang

resultsHmACHi15

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedTwinAI

optimization_LVwinding

H

ACHi16

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedOptimizedresultoptiSLangresultTest

resultTest

resultVsVsResults-

LVWindingsMetamodelvsTestsHITACHlOptimizedvsTestsMetamodelvsTests0.25

K

0.68

KOptimizedvsTestsCFDvsTests?Hitachi

EnergyLtd2025.

Allrightsreserved0.15

KInternal117u

ResearchObjectsu

Softwaredescriptionu

Preliminary

results

HighVoltageWindings

LowVoltageWindingsu

Conclusions18

Internal?Hitachi

EnergyLtd2025.

AllrightsreservedContentsHITACHlItemsMetamodelvsCFDMetamodelvsTestCFDvstestHVWindingsTemperatureRiseAverage

Difference5×10-112.492.83LVWindingsTemperature

RiseAverage

Difference0.010.970.15ItemsOptimizedvsTestMetamodelvsTe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論