天津市東麗區(qū)民族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第1頁
天津市東麗區(qū)民族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第2頁
天津市東麗區(qū)民族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第3頁
天津市東麗區(qū)民族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第4頁
天津市東麗區(qū)民族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

天津市東麗區(qū)民族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.2C. D.2.已知點(diǎn)分別為圓與圓的任意一點(diǎn),則的取值范圍是()A. B.C. D.3.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=04.設(shè),,,則,,大小關(guān)系為A. B.C. D.5.已知雙曲線離心率為2,過點(diǎn)的直線與雙曲線C交于A,B兩點(diǎn),且點(diǎn)P恰好是弦的中點(diǎn),則直線的方程為()A. B.C. D.6.方程表示的曲線經(jīng)過的一點(diǎn)是()A. B.C. D.7.過拋物線C:y2=4x的焦點(diǎn)F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.168.從直線上動(dòng)點(diǎn)作圓的兩條切線,切點(diǎn)分別為、,則最大時(shí),四邊形(為坐標(biāo)原點(diǎn))面積是()A. B.C. D.9.平面的法向量,平面的法向量,已知,則等于()A B.C. D.10.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點(diǎn),且,若側(cè)棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.11.若數(shù)列的前n項(xiàng)和(n∈N*),則=()A.20 B.30C.40 D.5012.若,則與的大小關(guān)系是()A. B.C. D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.日常生活中的飲用水通常是經(jīng)過凈化的.隨著水的純凈度的提高,所需凈化費(fèi)用不斷増加.已知將噸水凈化到純凈度為時(shí)所需費(fèi)用(單位:元)為.則凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的___________倍,這說明,水的純凈度越高,凈化費(fèi)用增加的速度越___________(填“快”或“慢”).14.將連續(xù)的正整數(shù)填入n行n列的方陣中,使得每行、每列、每條對(duì)角線上的數(shù)之和相等,可得到n階幻方.記n階幻方每條對(duì)角線上的數(shù)之和為,如圖:,那么的值為___________.15.關(guān)于曲線,給出下列三個(gè)結(jié)論:①曲線關(guān)于原點(diǎn)對(duì)稱,但不關(guān)于軸、軸對(duì)稱;②曲線恰好經(jīng)過4個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));③曲線上任意一點(diǎn)到原點(diǎn)的距離都不大于.其中,正確結(jié)論的序號(hào)是________.16.已知拋物線,則的準(zhǔn)線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點(diǎn).(1)求雙曲線的方程;(2)已知雙曲線的左右焦點(diǎn)分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點(diǎn),求的面積.18.(12分)已知函數(shù).若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.19.(12分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個(gè)零點(diǎn),且最小值為.①求證:;②當(dāng)且僅當(dāng)a在什么范圍內(nèi)時(shí),函數(shù)在區(qū)間上存在最小值?(2)若任意實(shí)數(shù)t,在閉區(qū)間上總存在兩實(shí)數(shù)m,n,使得成立,求實(shí)數(shù)a的取值范圍.20.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.(12分)設(shè)橢圓的左、右焦點(diǎn)分別為,.點(diǎn)滿足.(1)求橢圓的離心率;(2)設(shè)直線與橢圓相交于,兩點(diǎn),若直線與圓相交于,兩點(diǎn),且,求橢圓的方程.22.(10分)設(shè)a,b是實(shí)數(shù),若橢圓過點(diǎn),且離心率為.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)過橢圓E的上頂點(diǎn)P分別作斜率為,的兩條直線與橢圓交于C,D兩點(diǎn),且,試探究過C,D兩點(diǎn)的直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);否則,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)點(diǎn)到直線距離公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知:,該雙曲線的焦點(diǎn)坐標(biāo)為:,雙曲線的漸近線方程為:,所以焦點(diǎn)到漸近線的距離為:,故選:A2、B【解析】先判定兩圓的位置關(guān)系為相離的關(guān)系,然后利用幾何方法得到的取值范圍.【詳解】的圓心為,半徑,的圓心為,半徑,圓心距,∴兩圓相離,∴,故選:B.3、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(diǎn)(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點(diǎn)睛】本題考查直線方程的斜截式,屬于基礎(chǔ)題4、C【解析】由,可得,,故選C.考點(diǎn):指數(shù)函數(shù)性質(zhì)5、C【解析】運(yùn)用點(diǎn)差法即可求解【詳解】由已知得,又,,可得.則雙曲線C的方程為.設(shè),,則兩式相減得,即.又因?yàn)辄c(diǎn)P恰好是弦的中點(diǎn),所以,,所以直線的斜率為,所以直線的方程為,即.經(jīng)檢驗(yàn)滿足題意故選:C6、C【解析】當(dāng)時(shí)可得,可得答案.【詳解】當(dāng)時(shí)可得所以方程表示的曲線經(jīng)過的一點(diǎn)是,且其它點(diǎn)都不滿足方程,故選:C7、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長(zhǎng)公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點(diǎn)F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因?yàn)閨k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時(shí),等號(hào)成立,故選:B8、B【解析】分析可知當(dāng)時(shí),最大,計(jì)算出、,進(jìn)而可計(jì)算得出四邊形(為坐標(biāo)原點(diǎn))面積.【詳解】圓的圓心為坐標(biāo)原點(diǎn),連接、、,則,設(shè),則,,則,當(dāng)取最小值時(shí),,此時(shí),,,,故,此時(shí),.故選:B.9、A【解析】根據(jù)兩個(gè)平面平行得出其法向量平行,根據(jù)向量共線定理進(jìn)行計(jì)算即可.【詳解】由題意得,因?yàn)椋裕ǎ?,即,解得,所?故選:A10、A【解析】由題意推出平面,即平面,,將此三棱錐補(bǔ)成正方體,則它們有相同的外接球,正方體的對(duì)角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點(diǎn),∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長(zhǎng)交與點(diǎn),∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因?yàn)镾?ABC是正三棱錐。所以,以,,為從同一定點(diǎn)出發(fā)的正方體三條棱,將此三棱錐補(bǔ)成以正方體,則它們有相同的外接球,正方體的體對(duì)角線就是球的直徑,,所以.故選:A.11、B【解析】由前項(xiàng)和公式直接作差可得.【詳解】數(shù)列的前n項(xiàng)和(n∈N*),所以.故選:B.12、B【解析】由題知,進(jìn)而研究的符號(hào)即可得答案.詳解】解:,所以,即.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①.②.快【解析】根據(jù)導(dǎo)數(shù)的概念可知凈化所需費(fèi)用的瞬時(shí)變化率即為函數(shù)的一階導(dǎo)數(shù),即先對(duì)函數(shù)求導(dǎo),然后將和代入進(jìn)行計(jì)算,再求,即可得到結(jié)果,進(jìn)而能夠判斷水的純凈度越高,凈化費(fèi)用增加的速度的快慢【詳解】由題意,可知凈化所需費(fèi)用的瞬時(shí)變化率為,所以,,所以,所以凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的倍;因?yàn)椋芍募儍舳仍礁?,凈化費(fèi)用增加的速度越快.故答案為:,快.14、34【解析】根據(jù)每行數(shù)字之和相等,四行數(shù)字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數(shù)字之和,得.故答案為:3415、①③【解析】設(shè)為曲線上任意一點(diǎn),判斷、、是否滿足曲線方程即可判斷①;求出曲線過的整點(diǎn)即可判斷②;由條件利用即可得,即可判斷③;即可得解.【詳解】設(shè)為曲線上任意一點(diǎn),則,設(shè)點(diǎn)關(guān)于原點(diǎn)、軸、軸的對(duì)稱點(diǎn)分別為、、,因?yàn)?;;;所以點(diǎn)在曲線上,點(diǎn)、點(diǎn)不在曲線上,所以曲線關(guān)于原點(diǎn)對(duì)稱,但不關(guān)于軸、軸對(duì)稱,故①正確;當(dāng)時(shí),;當(dāng),.此外,當(dāng)時(shí),;當(dāng)時(shí),.故曲線過整點(diǎn),,,,,,故②錯(cuò)誤;又,所以恒成立,由可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,所以曲線上任一點(diǎn)到原點(diǎn)的距離,故③正確.故答案為:①③.【點(diǎn)睛】本題考查了與曲線方程有關(guān)的命題真假判斷,屬于中檔題.16、##【解析】根據(jù)拋物線的方程求出的值即得解.【詳解】解:因?yàn)閽佄锞€,所以,所以的準(zhǔn)線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關(guān)系,結(jié)合弦長(zhǎng)公式、點(diǎn)線距離公式及三角形面積公式求的面積.【詳解】(1)設(shè)所求雙曲線方程為,代入點(diǎn)得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設(shè),聯(lián)立得,滿足且,,由弦長(zhǎng)公式得,點(diǎn)到直線的距離.所以【點(diǎn)睛】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關(guān)系求原點(diǎn)與交點(diǎn)構(gòu)成三角形的面積,綜合應(yīng)用了弦長(zhǎng)公式、點(diǎn)線距離公式、三角形面積公式,屬于基礎(chǔ)題.18、.【解析】求得,根據(jù)其在上有兩個(gè)零點(diǎn),結(jié)合零點(diǎn)存在性定理,對(duì)參數(shù)進(jìn)行分類討論,即可求得參數(shù)的取值范圍.【詳解】因?yàn)?,所以,令,由題意可知在上有兩個(gè)不同零點(diǎn).又,若,則,故在上為增函數(shù),這與在上有兩個(gè)不同零點(diǎn)矛盾,故.當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),故,因?yàn)樵谏嫌袃蓚€(gè)不同零點(diǎn),故,即,即,取,,故在有一個(gè)零點(diǎn),取,,令,,則,故在為減函數(shù),因?yàn)?,故,故,故在有一個(gè)零點(diǎn),故在上有兩個(gè)零點(diǎn),故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)由函數(shù)的極值點(diǎn)個(gè)數(shù)求參數(shù)的范圍,涉及零點(diǎn)存在定理,以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,屬綜合困難題.19、(1)①證明見解析;②(2)【解析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實(shí)數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有成立,設(shè)﹐結(jié)合二次函數(shù)的圖象與性質(zhì),分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因?yàn)樽钚≈禐?,可得,即,因?yàn)?,所以根?jù)求根公式得,所以.②由①知,區(qū)間因?yàn)椋瑢?duì)稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因?yàn)?,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實(shí)數(shù),使得成立,則在區(qū)間上,有成立,設(shè)﹐函數(shù)對(duì)稱軸為①當(dāng)即時(shí),在上單調(diào)減,,此時(shí);②當(dāng)即時(shí),,此時(shí)③當(dāng)即時(shí),,此時(shí);④當(dāng)即時(shí),,此時(shí);綜合①②③④得,且最小值為,因?yàn)閷?duì)任意實(shí)數(shù)t,都有,所以只需,即,所以實(shí)數(shù)a的取值范圍.20、(1)(2)【解析】小問1:利用通項(xiàng)公式與的關(guān)系即可求出;小問2:根據(jù)(1)可得,結(jié)合錯(cuò)位相減法即可求出前n項(xiàng)和【小問1詳解】當(dāng)時(shí),,.當(dāng)時(shí),,…①,,…②①②得:,即:.,是以為首項(xiàng),以為公差的等差數(shù)列,;【小問2詳解】由(1)可知,則,…①兩邊同乘得:,…②①②得:,.21、(1);(2)【解析】(1)由及兩點(diǎn)間距離公式可建立等式,消去b,即可求解出,主要兩個(gè)根的的要舍去;(2)聯(lián)立直線和橢圓的方程,利用弦長(zhǎng)公式求得,再利用幾何關(guān)系求得,代入,可解得c,從而得到橢圓的方程.【詳解】(1)設(shè),,因?yàn)椋裕淼?,得(舍),或,所以;?)由(1)知,,可得橢圓方程為,直線的方程為,A,B兩點(diǎn)的坐標(biāo)滿足方程組為,消去y并整理,得,解得:,,得方程組的解和,不妨設(shè):,,所以,于是,圓心到直線的距離為,因?yàn)?,所以,整理得:,得(舍),或,所以橢圓方程為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查求橢圓的離心率解題關(guān)鍵是找到關(guān)于a,b,c的等量關(guān)系,第二問的關(guān)鍵是聯(lián)立直線與橢圓方程求出交點(diǎn)坐標(biāo),利用距離公式建立等量關(guān)系,求出c是求出橢圓方程的關(guān)鍵.22、(1);(2)過定點(diǎn),坐標(biāo)為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進(jìn)行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進(jìn)行求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論