版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter1Statistics,Data,andStatisticalThinkingContentsTheScienceofStatisticsTypesofStatisticalApplicationsinBusinessFundamentalElementsofStatisticsProcessesTypesofDataCollectingData:SamplingandRelatedIssuesBusinessAnalytics:CriticalThinkingwithStatisticsWhereWe’reGoingIntroducethefieldofstatisticsDemonstratehowstatisticsappliestobusinessIntroducethelanguageofstatisticsandthekeyelementsofanystatisticalproblemDifferentiatebetweenpopulationandsampledataDifferentiatebetweendescriptiveandinferentialstatisticsIntroducethekeyelementsofaprocessIdentifythedifferenttypesofdataanddata-collectionmethodsDiscoverhowcriticalthinkingthroughstatisticscanhelpimproveourquantitativeliteracy1.1TheScienceofStatisticsWhatIsStatistics?CollectingDatae.g.SurveyCharacterizingDatae.g.Mean,MedianAnalyzingDatae.g.TrendsandPatternsInterpretingDatae.g.ConclusionsandDecisionsWhatIsStatistics?Statisticsisthescienceofdata.Itinvolvescollecting,classifying,summarizing,organizing,analyzing,andinterpretingnumericalinformation.1.2TypesofStatisticalApplicationsinBusinessStatistics:TwoProcessesDescribingsetsofdataDrawingconclusions(makingestimates,decisions,predictions,etc.aboutsetsofdatabasedonsampling)StatisticalMethodsStatisticalMethodsDescriptiveStatisticsInferentialStatisticsDescriptiveStatisticsDescriptivestatisticsutilizesnumericalandgraphicalmethodstoexploredata,i.e.,tolookforpatternsinadataset,tosummarizetheinformationrevealedinadataset,andtopresenttheinformationinaconvenientform.InferentialStatisticsInferentialstatisticsutilizessampledatatomakeestimates,decisions,predictions,orothergeneralizationsaboutalargersetofdata.1.3FundamentalElements
ofStatisticsFundamentalElementsExperimental(orobservational)unitObjectuponwhichwecollectdataPopulationSetofunitsweareinterestedinstudyingVariablePropertyofanindividualexperimentalunitSampleSubsetoftheunitsofapopulationP
in
Population
&
ParameterS
in
Sample
&
StatisticFundamentalElementsStatisticalInferenceEstimateorpredictionorgeneralizationaboutapopulationbasedoninformationcontainedinasampleExampleAccordingtothemostrecentNielsensurveyofcableTVnewsviewers,theaverageageofCNNviewersis60years.Supposearivalnetwork(e.g.,FOX)executivehypothesizesthattheaverageageofFOXviewersisgreaterthan60.Totestherhypothesis,shesamples200FOXviewersanddeterminestheageofeach.a.Describethepopulation.b.Describethevariableofinterest.c.Describethesample.d.Describetheinference.Example(cont)Solutiona.Describethepopulation.ThepopulationisthesetofunitsofinteresttotheTVexecutive,whichisthesetofallFOXviewers.b.Describethevariableofinterest.Theage(inyears)ofeachvieweristhevariableofinterest.Example(cont)c.Describethesample.Thesamplemustbeasubsetofthepopulation.Inthiscase,itisthe200FOXviewersselectedbytheexecutive.Example(cont)d.Describetheinference.Theinferenceofinterestinvolvesthegeneralizationoftheinformationcontainedinthesampleof200viewerstothepopulationofallFOXviewers.Inparticular,theexecutivewantstoestimatetheaverageageoftheviewersinordertodeterminewhetheritexceeds60years.Shemightaccomplishthisbycalculatingtheaverageageinthesampleandusingthesampleaveragetoestimatethepopulationaverage.FundamentalElementsMeasureofReliabilityStatement(usuallyqualified)aboutthedegreeofuncertaintyassociatedwithastatisticalinferenceFourElementsofDescriptiveStatisticalProblemsThepopulationorsampleofinterestOneormorevariables(characteristicsofthepopulationorsampleunits)thataretobeinvestigatedTables,graphs,ornumericalsummarytoolsIdentificationofpatternsinthedataFiveElementsofInferentialStatisticalProblemsThepopulationofinterestOneormorevariables(characteristicsofthepopulationunits)thataretobeinvestigatedThesampleofpopulationunitsTheinferenceaboutthepopulationbasedoninformationcontainedinthesampleAmeasureofreliabilityfortheinference1.4ProcessesProcessAprocessisaseriesofactionsoroperationsthattransformsinputstooutputs.Aprocessproducesorgeneratesoutputovertime.ProcessAprocesswhoseoperationsoractionsareunknownorunspecifiediscalledablackbox.Anysetofoutput(objectornumbers)producedbyaprocessiscalledasample.ExampleAparticularfast-foodrestaurantchainhas6,289outletswithdrive-throughwindows.Toattractmorecustomerstoitsdrive-throughservices,thecompanyisconsideringofferinga50%discounttocustomerswhowaitmorethanaspecifiednumberofminutestoreceivetheirorder.Tohelpdeterminewhatthetimelimitshouldbe,thecompanydecidedtoestimatetheaveragewaitingtimeataparticulardrive-throughwindowinDallas,Texas.For7consecutivedays,theworkertakingcustomers’ordersrecordedthetimethateveryorderwasplaced.Theworkerwhohandedtheordertothecustomerrecordedthetimeofdelivery.Inbothcases,workersusedsynchronizeddigitalclocksthatreportedthetimetothenearestsecond.Attheendofthe7-dayperiod,2,109ordershadbeentimed.Example(cont)a.DescribetheprocessofinterestattheDallasrestaurant.b.Describethevariableofinterest.c.Describethesample.d.Describetheinferenceofinterest.e.Describehowthereliabilityoftheinferencecouldbemeasured.Solutiona.Theprocessofinterestisthedrive-throughwindowataparticularfast-foodrestaurantinDallas,Texas.Itisaprocessbecauseit“produces,”or“generates,”mealsovertime—thatis,itservicescustomersovertime.Example(cont)b.Describethevariableofinterest.Thevariablethecompanymonitorediscustomerwaitingtime,thelengthoftimeacustomerwaitstoreceiveamealafterplacinganorder.Becausethestudyisfocusingonlyontheoutputoftheprocess(thetimetoproducetheoutput)andnottheinternaloperationsoftheprocess(thetasksrequiredtoproduceamealforacustomer),theprocessisbeingtreatedasablackbox.c.Describethesample.Thesamplingplanwastomonitoreveryorderoveraparticular7-dayperiod.Thesampleisthe2,109ordersthatwereprocessedduringthe7-dayperiod.Example(cont)d.Describetheinferenceofinterest.Thecompany’simmediateinterestisinlearningaboutthedrive-throughwindowinDallas.Theyplantodothisbyusingthewaitingtimesfromthesampletomakeastatisticalinferenceaboutthedrive-throughprocess.Inparticular,theymightusetheaveragewaitingtimeforthesampletoestimatetheaveragewaitingtimeattheDallasfacility.Example(cont)e.Describehowthereliabilityoftheinferencecouldbemeasured.Asforinferencesaboutpopulations,measuresofreliabilitycanbedevelopedforinferencesaboutprocesses.ThereliabilityoftheestimateoftheaveragewaitingtimefortheDallasrestaurantcouldbemeasuredbyaboundontheerrorofestimation—thatis,wemightfindthattheaveragewaitingtimeis4.2minutes,withaboundontheerrorofestimationof0.5minutes.TheimplicationwouldbethatwecouldbereasonablycertainthatthetrueaveragewaitingtimefortheDallasprocessisbetween3.7and4.7minutes.1.5TypesofDataTypesofDataQuantitativedataaremeasurementsthatarerecordedonanaturallyoccurringnumericalscale.Qualitativedataaremeasurementsthatcannotbemeasuredonanaturalnumericalscale;theycanonlybeclassifiedintooneofagroupofcategories.TypesofDataTypesofDataQuantitativeDataQualitativeDataQuantitativeDataMeasuredonanumericalscale.Thetemperature(indegreesCelsius)atwhicheachunitinasampleof20piecesofheat-resistantplasticbeginstomeltThecurrentunemploymentrate(measuredasapercentage)foreachofthe50statesThescoresofasampleof150MBAapplicantsontheGMAT,astandardizedbusinessgraduateschoolentranceexamadministerednationwideThenumberoffemaleexecutivesemployedineachofasampleof75manufacturingcompaniesQualitativeDataClassifiedintocategories.Thepoliticalpartyaffiliation(Democrat,Republican,orIndependent)inasampleof50CEOsThedefectivestatus(defectiveornot)ofeachof100computerchipsmanufacturedbyIntelThesizeofacar(subcompact,compact,midsize,orfull-size)rentedbyeachofasampleof30businesstravelersAtastetester’sranking(best,worst,etc.)offourbrandsofbarbecuesauceforapanelof10testersExampleChemicalandmanufacturingplantssometimesdischargetoxic-wastematerialssuchasDDTintonearbyriversandstreams.Thesetoxinscanadverselyaffecttheplantsandanimalsinhabitingtheriverandtheriverbank.TheU.S.ArmyCorpsofEngineersconductedastudyoffishintheTennesseeRiver(inAlabama)anditsthreetributarycreeks:FlintCreek,LimestoneCreek,andSpringCreek.Atotalof144fishwerecaptured,andthefollowingvariablesweremeasuredforeach:(continuedonnextslide)Example(cont)1.River/creekwhereeachfishwascaptured2.Species(channelcatfish,largemouthbass,orsmallmouthbuffalofish)3.Length(centimeters)4.Weight(grams)5.DDTconcentration(partspermillion)ThesedataaresavedintheDDTfile.Classifyeachofthefivevariablesmeasuredasquantitativeorqualitative.Example(cont)SolutionThevariableslength,weight,andDDTarequantitativebecauseeachismeasuredonanumericalscale:lengthincentimeters,weightingrams,andDDTinpartspermillion.Incontrast,river/creekandspeciescannotbemeasuredquantitatively:Theycanonlybeclassifiedintocategories(e.g.,channelcatfish,largemouthbass,andsmallmouthbuffalofishforspecies).Consequently,dataonriver/creekandspeciesarequalitative.1.6CollectingDataObtainingDataDatafromapublishedsourceDatafromadesignedexperimentDatafromanobservationallystudyObtainingDataPublishedsource
Book,journal,newspaper,WebsiteDesignedexperiment
ResearcherexertsstrictcontrolovertheunitsSurvey
AgroupofpeoplearesurveyedandtheirresponsesarerecordedObservationstudy
UnitsareobservedinnaturalsettingandvariablesofinterestarerecordedDesignedExperimentAdesignedexperimentisadata-collectionmethodwheretheresearcherexertsfullcontroloverthecharacteristicsoftheexperimentalunitssampled.Theseexperimentstypicallyinvolveagroupofexperimentalunitsthatareassignedthetreatmentandanuntreated(orcontrol)group.ObservationalStudyAnobservationalstudyisadata-collectionmethodwheretheexperimentalunitssampledareobservedintheirnaturalsetting.Noattemptismadetocontrolthecharacteristicsoftheexperimentalunitssampled.(Examplesincludeopinionpollsandsurveys.)SamplesArepresentativesampleexhibitscharacteristicstypicalofthosepossessedbythepopulationofinterest.Asimplerandomsampleofnexperimentalunitsisasampleselectedfromthepopulationinsuchawaythateverydifferentsampleofsizenhasanequalchanceofselection.RandomSampleAsimplerandomsampleofnexperimentalunitsisasampleselectedfromthepopulationinsuchawaythateverydifferentsampleofsizenhasanequalchanceofselection.RandomNumberGeneratorsMostresearchersrelyonrandomnumbergeneratorstoautomaticallygeneratetherandomsample.Randomnumbergeneratorsareavailableintableform,andtheyarebuiltintomoststatisticalsoftwarepackages.ExampleSupposeyouwishtoassessthefeasibilityofbuildinganewhighschool.Aspartofyourstudy,youwouldliketogaugetheopinionsofpeoplelivingclosetotheproposedbuildingsite.Theneighborhoodadjacenttothesitehas711homes.Usearandomnumbergeneratortoselectasimplerandomsampleof20householdsfromtheneighborhoodtoparticipateinthestudyExample(cont)SolutionInthisstudy,yourpopulationofinterestconsistsofthe711householdsintheadjacentneighborhood.Toensurethateverypossiblesampleof20householdsselectedfromthe711hasanequalchanceofselection(i.e.,toensureasimplerandomsample),firstassignanumberfrom1to711toeachofthehouseholdsinthepopulation.ThesenumberswereenteredintoanExcelworksheet.Now,applytherandomnumbergeneratorofExcel/XLSTAT,requestingthat20householdsbeselectedwithoutreplacement.Thefigureinyourtextonpage17showsonepossiblesetofrandomnumbersgeneratedfromXLSTAT.Youcanseethathouseholdsnumbered40,63,108,...,636arethehouseholdstobeincludedinyoursample.ImportanceofSelectionHowasampleisselectedfromapopulationisofvitalimportanceinstatisticalinferencebecausetheprobabilityofanobservedsamplewillbeusedtoinferthecharacteristicsofthesampledpopulation.RandomSamplingStratifiedrandomsampling
usedwhentheexperimentalunitsassociatedwiththepopulationcanbeseparatedintotwoormoregroupsofunits.ClustersamplingsamplenaturalgroupingofexperimentalunitsandcollectdatafromallexperimentalunitswithineachclusterRandomSamplingSystematicsampling
systematicallyselectingeverykthexperimentalunitfromalistofallexperimentalunits.Randomizedresponsesamplingusefulwhenthequestionsofapollsterarelikelytoelicitfalseanswers.NonrandomSampleErrorsSelectionbiasresultswhenasubsetoftheexperimentalunitsinthepopulationisexcludedsothattheseunitshavenochanceofbeingselectedforthesample.Nonresponsebias
resultswhentheresearchersconductingasurveyorstudyareunabletoobtaindataonallexperimentalunitsselectedforthesample.Measurementerror
referstoinaccuraciesinthevaluesofthedatarecorded.Insurveys,theerrormaybeduetoambiguousorleadingquestionsandtheinterviewer’seffectontherespondent.ExampleWhatisthemostpopulardeviceusedbyonlineshoppers?Tofindout,themobilevideoadnetworkAdColonyconducteda2019nationwidesurveyof1,000USonlineshoppersforMobileMarketer.Themostpopulardevicewasasmartphone,usedby56%oftheonlineshoppers.Otherresults:28%usedadesktoporlaptopcomputer,and16%usedatablet.a.Identifythedata-collectionmethod.b.Identifythetargetpopulation.c.Arethesampledatarepresentativeofthepopulation?Example(cont)Solutiona.Identifythedata-collectionmethod.Thedata-collectionmethodisasurvey:1,000onlineshoppersparticipatedinthestudy.b.Identifythetargetpopulation.Presumably,MobileMarketer(whocommissionedthesurvey)isinterestedinthedevicesusedbyallUSonlineshoppers.Consequently,thetargetpopulationisallconsumerswhousetheInternetforonlineshopping.Example(cont)c.Arethesampledatarepresentativeofthepopulation?Becausethe1,000respondentsclearlymakeupasubsetofthetargetpopulation,theydoformasample.WhetherornotthesampleisrepresentativeisunclearbecauseMobileMarketerprovidednodetailedinformationonhowthe1,000shopperswereselected.Iftherespondentswereobtainedusing,say,random-digittelephonedialing,thenthesampleislikelytoberepresentativebecauseitisarandomsample.Example(cont)However,ifthequestionnairewasmadeavailabletoanyonesurfingtheInternet,thentherespondentsareself-selected(i.e.,eachInternetuserwhosawthesurveychosewhetherornottorespondtoit).Suchasurveyoftensuffersfromnonresponsebias.ItispossiblethatmanyInternetuserswhochosenottorespond(orwhoneversawthequestionnaire)wouldhaveansweredthequestionsdifferently,leadingtoalower(orhigher)samplepercentage.1.7CriticalThinkingwithStatisticsStatisticalThinkingBusinessanalyticsreferstomethodologies(e.g.statisticalmethods)thatextractusefulinformationfromdatainordertomakebetterbusinessdecisions.Statisticalthinkinginvolvesapplyingrationalthoughtandthescienceofstatisticstocriticallyassessdataandinferences.Fundamentaltothethoughtprocessisthatvariationexistsinpopulationsandprocessdata.StatisticsinBusinessAnalyticsKeyIdeasTypesofStatisticalApplicationsDescriptive 1.Identifypopulationandsample(collectionofexperimentalunits) 2.Identifyvariable(s) 3.Collectdata
4.DescribedataKeyIdeasTypesofStatisticalApplicationsInferential 1.Identifypopulation(collectionofallexperimental
units) 2.Identifyvariable(s) 3.Collectsampledata(subsetofpopulation)
4.Inferenceaboutpopulationbasedonsample 5.MeasureofreliabilityforinferenceKeyIdeasTypesofData1. Quantitative(numericalinnature)2. Qualitative(categoricalinnature)KeyIdeasData-CollectionMethods1. Observational(e.g.survey)2.
Publishedsource3. DesignedexperimentKeyIdeasTypesofRandomSamples1. SimpleRandomSample2. Stratifiedrandomsample3. Clustersample4. Systematicsample5. RandomresponsesampleKeyIdeasProblemswithNonrandomSamples1. Selectionbias2.
Nonresponsebias3. MeasurementerrorChapter2MethodsforDescribingSetsofDataContentsDescribingQualitativeDataGraphicalMethodsforDescribingQuantitativeDataNumericalMeasuresofCentralTendencyNumericalMeasuresofVariabilityUsingtheMeanandStandardDeviationtoDescribeDataContents(cont)6. NumericalMeasuresofRelativeStanding7. MethodsforDetectingOutliers:BoxPlotsandz-scores8. GraphingBivariateRelationships9. TheTimeSeriesPlot10. DistortingtheTruthwithDescriptiveTechniquesWhereWe’reGoingDescribequalitativedatausinggraphsDescribedatausinggraphsDescribequantitativedatausingnumericalmeasuresDescribetherelationshipbetweentwoquantitativevariablesusinggraphsDetectingdescriptivemethodsthatdistortthetruth2.1DescribingQualitativeDataKeyTermsAclassisoneofthecategoriesintowhichqualitativedatacanbeclassified.Theclassfrequencyisthenumberofobservationsinthedatasetfallingintoaparticularclass.Theclassrelativefrequencyistheclassfrequencydividedbythetotalnumbersofobservationsinthedataset.Theclasspercentageistheclassrelativefrequencymultipliedby100.SummaryTableListscategories&numberofelementsincategoryObtainedbytallyingresponsesincategoryMayshowfrequencies(counts),%orbothRowIsCategoryTally:
||||||||
||||||||MajorCountAccounting130Economics20Management50Total200BarGraphVerticalBarsforQualitativeVariablesBarHeightShowsFrequencyor%ZeroPointPercentUsedAlsoEqualBarWidthsFrequencyPieChartShowsbreakdownoftotalquantityinto
categoriesUsefulforshowing
relativedifferencesAnglesize=(360°)(percent)Econ.10%Mgmt.25%Acct.65%Majors(360°)(10%)=36°36°ParetoDiagramLikeabargraph,butwiththecategoriesarrangedbyheightindescendingorderfromlefttoright.VerticalBarsforQualitativeVariablesBarHeightShowsFrequencyor%ZeroPointPercentUsedAlsoEqualBarWidthsFrequencyExample:50HighestPaidCEOsDataon50HighestPaidCEOsaregiveninTable2.1inthebook.Constructa
bar
graph,piechart,andPareto
diagramtodescribethedataprovidedinthefrequencysummarytablebelow.Example:BarGraphSolutionBarGraphforDegreesof50HighestPaidCEOsExample:PieChartSolutionPieChartofDegreeExample:ParetoDiagramSolutionParetoDiagramforDegreesof50HighestPaidCEOsSummaryBargraph:Thecategories(classes)ofthequalitativevariablearerepresentedbybars,wheretheheightofeachbariseithertheclassfrequency,classrelativefrequency,orclasspercentage.Piechart:Thecategories(classes)ofthequalitativevariablearerepresentedbyslicesofapie(circle).Thesizeofeachsliceisproportionaltotheclassrelativefrequency.Paretodiagram:Abargraphwiththecategories(classes)ofthequalitativevariable(i.e.,thebars)arrangedbyheightindescendingorderfromlefttoright.2.2GraphicalMethodsforDescribingQuantitativeDataDotPlotHorizontalaxisisascaleforthequantitativevariable,e.g.,percent.Thenumericalvalueofeachmeasurementislocatedonthehorizontalscalebyadot.Stem-and-LeafDisplay1.Divideeachobservationintostemvalueandleafvalues:StemsarelistedinorderinacolumnLeafvalueisplacedincorrespondingstemrowtorightofbar2.
Data:21,24,24,26,27,27,30,32,38,41262144677302841Histogram012345FrequencyRelativeFrequencyPercent0 15.5 25.5 35.5 45.5 55.5LowerBoundaryBarsTouchClassFreq.15.5–25.5325.5–35.5535.5–45.52CountNumberofHistogramClassesSomerecommendationsforselectingthenumberofintervalsinahistogramforsmallerdatasetsaregivenintheboxbelow.SummaryDotplot:Thenumericalvalueofeachquantitativemeasurementinthedatasetisrepresentedbyadotonahorizontalscale.Whendatavaluesrepeat,thedotsareplacedaboveoneanothervertically.Stem-and-leafdisplay:Thenumericalvalueofthequantitativevariableispartitionedintoa“stem”anda“l(fā)eaf.”Thepossiblestemsarelistedinorderinacolumn.Theleafforeachquantitativemeasurementinthedatasetisplacedinthecorrespondingstemrow.Leavesforobservationswiththesamestemvaluearelistedinincreasingorderhorizontally.SummaryHistogram:Thepossiblenumericalvaluesofthequantitativevariablearepartitionedintoclassintervals,whereeachintervalhasthesamewidth.Theseintervalsformthescaleofthehorizontalaxis.Thefrequencyorrelativefrequencyofobservationsineachclassintervalisdetermined.Ahorizontalbarisplacedovereachclassinterval,withheightequaltoeithertheclassfrequencyorclassrelativefrequency.2.3NumericalMeasures
ofCentralTendencyCentralTendencyThecentraltendencyofthesetofmeasurements–thatis,thetendencyofthedatatocluster,orcenter,aboutcertainnumericalvalues.VariabilityThevariabilityofthesetofmeasurements–thatis,thespreadofthedata.MeanThemeanofasetofquantitativedataisthesumofthemeasurementsdividedbythenumberofmeasurementscontainedinthedataset.Example:FindtheMeanCalculatethemeanofthefollowingsixsamplemeasurements:5,3,8,5,6.SymbolsfortheSampleandPopulationMeanInthistext,weadoptageneralpolicyofusingGreekletterstorepresentpopulationnumericaldescriptivemeasuresandRomanletterstorepresentcorrespondingdescriptivemeasuresforthesample.Thesymbolsforthemeanare Samplemean
PopulationmeanMedianThemedianofaquantitativedatasetisthemiddlenumberwhenthemeasurementsarearrangedinascending(ordescending)order.CalculatingaSampleMedian,mArrangethenmeasurementsfromsmallesttolargest.Ifnisodd,misthemiddlenumber.Ifniseven,misthemeanofthemiddletwonumbers.Example:MedianforOddNumberofMeasurementsConsiderthefollowingsampleofn=7measurements:5,7,4,5,20,6,2.RawData: 5,7,4,5,20,6,2
Ordered:
2,4,5,5,6,7,20Position: 1234567Medianofthissampleism=5.Example:MedianforEvenNumberofMeasurementsConsiderthefollowingsampleofn=6measurements:5,7,4,5,20,6.RawData: 5,7,4,5,20,6
Ordered: 4,5,5,6,7,20Position: 123
456Medianofthissampleism=5.5.ModeThemodeisthemeasurementthatoccursmostfrequentlyinthedataset.SkewedAdatasetissaidtobeskewedifonetailofthedistributionhasmoreextremeobservationsthantheothertail.Example:ModeEachof10tastetestersratedanewbrandofbarbecuesauceona10-pointscale,where1=awfuland10=excellent.Findthemodeforthe10ratingsshownbelow.87968109957Thescore9occursmostoftenandsothemodeofthetaste-ratingsis9.ShapeDescribeshowdataaredistributedMeasuresofShapeSkew=SymmetryRight-SkewedLeft-SkewedSymmetricMean
=Median
Mean
Median
Median
Mean2.4NumericalMeasures
ofVariabilityRangeTherangeofaquantitativedatasetisequaltothelargestmeasurementminusthesmallestmeasurement.Range=Largest–SmallestBothdatasetshavearangeof50.Therangeiseasytocomputeandeasytounderstand,butitisaninsensitivemeasureofdatavariation.SampleVarianceThesamplevarianceforasampleofnmeasurementsisequaltothesumofthesquareddeviationsfromthemeandividedby(n–1).Thesymbols2isusedtorepresentthesamplevariance.Samplevarianceisameasureoftheofthevariabilityofadataset.Compare:andSample1:MorevariabilityaroundthemeanSample2:LessvariabilityaroundthemeanSampleVarianceFormulaShortcutformulaforcalculatings2:SampleStandardDeviationThesamplestandarddeviation,s,isdefinedasthepositivesquarerootofthesamplevariance,s2.So,SymbolsforVarianceandStandardDeviations2=Samplevariances
=Samplestandarddeviation=Populationvariance=PopulationstandarddeviationExampleCalculatethevarianceandstandarddeviationforthesample2,3,3,3,4.SolutionFirst,findthemean:
2.5UsingtheMeanandStandardDeviationtoDescribeDataUsingtheMeanandStandardDeviationtoDescribeData:Chebyshev’sRuleChebyshev’sRuleappliestoanydataset,regardlessoftheshapeofthefrequencydistribution.InterpretingStandardDeviation:Chebyshev’sTheoremNousefulinformationAtleast3/4ofthedataAtleast8/9ofthedataInterpretingStandardDeviation:EmpiricalRuleAppliestodatasetsthataremoundshapedandsymmetricApproximately68%ofthemeasurementslieintheintervalApproximately95%ofthemeasurementslieintheintervalApproximately99.7%ofthemeasurementslieintheintervalInterpretingStandardDeviation:EmpiricalRulex–3s
x–2s
x–s
x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖南邵陽市隆回縣人民醫(yī)院公開招聘編制外專業(yè)技術(shù)人員3人參考筆試題庫附答案解析
- 2025廣東東莞市大灣區(qū)大學(xué)教學(xué)綜合事務(wù)崗招聘1人考試重點(diǎn)題庫及答案解析
- 2026中能建城市投資發(fā)展有限公司校園招聘考試重點(diǎn)題庫及答案解析
- 老年病科科普文章
- 2025年迪慶州香格里拉客運(yùn)分公司招聘安檢員(3人)考試核心題庫及答案解析
- 2025廣西來賓市興賓區(qū)婦幼保健院公開招聘見習(xí)人員11人備考核心試題附答案解析
- 2026廣東廣州醫(yī)科大學(xué)附屬第一醫(yī)院招聘249人考試核心題庫及答案解析
- 2025福建南平浦城縣中醫(yī)醫(yī)院招聘1人考試核心題庫及答案解析
- 2025南昌動物園招聘會計(jì)1人備考核心試題附答案解析
- 2026四川廣元市昭化區(qū)招聘城鎮(zhèn)公益性崗位4人考試參考試題及答案解析
- 2025年華中科技大學(xué)職工隊(duì)伍公開招聘備考題庫完整答案詳解
- 2025年下半年貴州遵義市市直事業(yè)單位選調(diào)56人筆試考試備考題庫及答案解析
- 水電分包協(xié)議合同范本
- 2025年初級社會工作者考試《社會工作綜合能力》真題及答案解析
- 貨架租用合同范本
- 還建房出售合同范本
- 2025年無人機(jī)航拍理論題庫(含答案)
- 安陽學(xué)院期末考試原題及答案
- 校園廣播站每日提醒培訓(xùn)課件
- 中層競聘面試必-備技能與策略實(shí)戰(zhàn)模擬與案例分析
- 政銀合作融資模式-洞察與解讀
評論
0/150
提交評論