版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆北京市昌平區(qū)市級(jí)名校高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”2.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知是雙曲線:的右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)作的一條漸近線的垂線,垂足為,并交軸于點(diǎn).若,則的離心率為()A. B.C.2 D.4.已知直線l:的傾斜角為,則()A. B.1C. D.-15.在流行病學(xué)中,基本傳染數(shù)是指在沒(méi)有外力介入,同時(shí)所有人都沒(méi)有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過(guò)程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過(guò)1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天6.用這3個(gè)數(shù)組成沒(méi)有重復(fù)數(shù)字的三位數(shù),則事件“這個(gè)三位數(shù)是偶數(shù)”與事件“這個(gè)三位數(shù)大于342”()A.是互斥但不對(duì)立事件 B.不是互斥事件C.是對(duì)立事件 D.是不可能事件7.為了更好地研究雙曲線,某校高二年級(jí)的一位數(shù)學(xué)老師制作了一個(gè)如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且,則()A. B.C. D.8.已知點(diǎn)P是雙曲線上的動(dòng)點(diǎn),過(guò)原點(diǎn)O的直線l與雙曲線分別相交于M、N兩點(diǎn),則的最小值為()A.4 B.3C.2 D.19.已知橢圓上一點(diǎn)到左焦點(diǎn)的距離為,是的中點(diǎn),則()A.1 B.2C.3 D.410.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.11.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?12.已知集合,集合或,是實(shí)數(shù)集,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點(diǎn)為,過(guò)作x軸垂線交橢圓于點(diǎn)P,若為等腰直角三角形,則橢圓的離心率是___________.14.二項(xiàng)式的展開(kāi)式中,項(xiàng)的系數(shù)為_(kāi)_________.15.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為_(kāi)__________海里.16.設(shè)雙曲線C:(a>0,b>0)的一條漸近線為y=x,則C的離心率為_(kāi)________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐A-BCD中,O為線段BD中點(diǎn),是邊長(zhǎng)為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值18.(12分)某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.已知公司前臺(tái)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該公司每天的利潤(rùn)有多少元?(3)小明打算將四件禮物隨機(jī)分成兩個(gè)包裹寄出,且每個(gè)包裹重量都不超過(guò),求他支付的快遞費(fèi)為45元的概率.19.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值20.(12分)在①,②,③,,成等比數(shù)列這三個(gè)條件中選擇符合題意的兩個(gè)條件,補(bǔ)充在下面的問(wèn)題中,并求解.已知數(shù)列中,公差不等于的等差數(shù)列滿足_________,求數(shù)列的前項(xiàng)和.21.(12分)在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點(diǎn)E為棱AD的中點(diǎn)(1)求證:平面ABCD;(2)求直線AB與平面PBC所成角的正弦值22.(10分)從某居民區(qū)隨機(jī)抽取2021年的10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,,(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲(chǔ)蓄之間的變化情況,并預(yù)測(cè)當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲(chǔ)蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.2、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結(jié)論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B3、A【解析】由條件建立a,b,c的關(guān)系,由此可求離心率的值.【詳解】設(shè),則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.4、A【解析】由傾斜角求出斜率,列方程即可求出m.【詳解】因?yàn)橹本€l的傾斜角為,所以斜率.所以,解得:.故選:A5、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過(guò)n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問(wèn)題,解決這類問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程6、B【解析】根據(jù)題意列舉出所有可能性,進(jìn)而根據(jù)各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)的情況有:{234,243,324,342,423,432},其中偶數(shù)有{234,324,342,432},大于342的有{423,432}.所以兩個(gè)事件不是互斥事件,也不是對(duì)立事件.故選:B.7、D【解析】依題意以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn)建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點(diǎn)縱坐標(biāo)代入計(jì)算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,因?yàn)殡p曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因?yàn)?,所以的縱坐標(biāo)為18.由,得,故.故選:D.8、C【解析】根據(jù)雙曲線的對(duì)稱性可得為的中點(diǎn),即可得到,再根據(jù)雙曲線的性質(zhì)計(jì)算可得;【詳解】解:根據(jù)雙曲線的對(duì)稱性可知為的中點(diǎn),所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點(diǎn)時(shí)取等號(hào),所以故選:C9、A【解析】由橢圓的定義得,進(jìn)而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因?yàn)橛蓹E圓的定義得,,所以,因?yàn)槭堑闹悬c(diǎn),是的中點(diǎn),所以.故選:A10、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補(bǔ)形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設(shè)是的中點(diǎn),連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補(bǔ)形成正方體如下圖所示,正方體的邊長(zhǎng)為2,則體對(duì)角線長(zhǎng)為.設(shè)正方體外接球的半徑為,則,所以外接球的表面積為,故選:.11、C【解析】本題為計(jì)算前項(xiàng)和,模擬程序,實(shí)際計(jì)算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項(xiàng)和.易知,則,令,解得.即前7項(xiàng)的和.為故判斷框中應(yīng)填入“?”.故選:C.12、A【解析】先化簡(jiǎn)集合,再由集合的交集、補(bǔ)集運(yùn)算求解即可【詳解】,或,故故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】以為等腰直角三角形列方程組可得之間的關(guān)系式,進(jìn)而求得橢圓的離心率.【詳解】橢圓的左、右焦點(diǎn)為,點(diǎn)P由為等腰直角三角形可知,,即可化為,故或(舍)故答案為:14、80【解析】利用二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】二項(xiàng)式的通項(xiàng)公式為:,令,所以項(xiàng)的系數(shù)為,故答案為:8015、【解析】利用正弦定理求得甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離.【詳解】,設(shè)甲乙距離,由正弦定理得.故答案為:16、【解析】根據(jù)已知可得,結(jié)合雙曲線中的關(guān)系,即可求解.【詳解】由雙曲線方程可得其焦點(diǎn)在軸上,因?yàn)槠湟粭l漸近線為,所以,.故答案為:【點(diǎn)睛】本題考查的是有關(guān)雙曲線性質(zhì),利用漸近線方程與離心率關(guān)系是解題的關(guān)鍵,要注意判斷焦點(diǎn)所在位置,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)由題意可得OA⊥平面BCD,從而可證明.(2)作OF⊥BD交BC于點(diǎn)F,如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標(biāo)系,利用向量法可求解.【小問(wèn)1詳解】因?yàn)锳B=AD,O為BD中點(diǎn),所以O(shè)A⊥BD因?yàn)镺A⊥BC,且BD,BC平面BCD,BD∩BC=B,所以O(shè)A⊥平面BCD又因?yàn)镺A平面ABD,所以平面ABD⊥平面BCD【小問(wèn)2詳解】作OF⊥BD交BC于點(diǎn)F,如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標(biāo)系因?yàn)槿切蜲CD為邊長(zhǎng)為1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),設(shè)平面EBC的法向量為=()因?yàn)椤虰E,⊥BC,所以令,則,,所以已知平面BCD的法向量所以所以平面EBC與平面BCD的夾角的余弦值為18、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤(rùn)有1000元.(3).【解析】(1)對(duì)于平均數(shù),運(yùn)用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關(guān)于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤(rùn).(3)該為古典概型,根據(jù)題意分別確定總的基本事件個(gè)數(shù),以及事件“快遞費(fèi)為45元”包括的基本事件個(gè)數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天數(shù)分別為6、6、30、12、6,所以每天包裹數(shù)量的平均數(shù)為設(shè)中位數(shù)為x,易知,則,解得x=260.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)由(1)可知平均每天的攬件數(shù)為260,利潤(rùn)為(元),所以該公司平均每天的利潤(rùn)有1000元(3)設(shè)四件禮物分為二個(gè)包裹E、F,因?yàn)槎Y物A、C、D共重(千克),禮物B、C、D共重(千克),都超過(guò)5千克,故E和F的重量數(shù)分別有,,,,共5種,對(duì)應(yīng)的快遞費(fèi)分別為45、45、50,45,50(單位:元)故所求概率為.【點(diǎn)睛】主要考查了頻率分布直方圖的平均數(shù),中位數(shù)求解,以及古典概型,屬于中檔題.19、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問(wèn)1詳解】證明:因?yàn)槠矫?,平面,平面,所以,且,因?yàn)椋鐖D所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問(wèn)2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為20、詳見(jiàn)解析【解析】根據(jù)已知求出的通項(xiàng)公式.當(dāng)①②時(shí),設(shè)數(shù)列公差為,利用賦值法得到與的關(guān)系式,列方程求出與,求出,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選②③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,解出與,寫出的通項(xiàng)公式,可得數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求和即可;選①③時(shí),設(shè)數(shù)列公差為,根據(jù)題意得到與的關(guān)系式,發(fā)現(xiàn)無(wú)解,則等差數(shù)列不存在,故不合題意.【詳解】解:因?yàn)椋?,所以是以為首?xiàng),為公比的等比數(shù)列,所以,選①②時(shí),設(shè)數(shù)列公差為,因?yàn)椋?,因?yàn)?,所以時(shí),,解得,,所以,所以.所以.(i)所以(ii)(i)(ii),得:所以.選②③時(shí),設(shè)數(shù)列公差為,因?yàn)椋?,即,因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,因?yàn)?,所以,從而,所以,所以,(i)所以(ii)(i)(ii),得:,所以.選①③時(shí),設(shè)數(shù)列公差為,因?yàn)?,所以時(shí),,所以.又因?yàn)?,,成等比?shù)列,所以,即,化簡(jiǎn)得,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026山東第一醫(yī)科大學(xué)附屬腫瘤醫(yī)院第二批招聘?jìng)淇碱}庫(kù)及答案詳解(奪冠系列)
- 初一昌平考試期末題目及答案
- 策劃師考試試卷及答案
- 醫(yī)院藥師培訓(xùn)試題及答案
- 2025-2026人教版初中七年級(jí)語(yǔ)文卷
- 2025-2026七年級(jí)上道德與法治期末測(cè)試
- 《高寒退化坡草地客土噴播修復(fù)規(guī)程》征求意見(jiàn)稿編制說(shuō)明
- 公共衛(wèi)生許可證管理制度
- 衛(wèi)生室組織管理制度
- 社區(qū)服務(wù)站衛(wèi)生監(jiān)督制度
- 新疆環(huán)保行業(yè)前景分析報(bào)告
- 2025~2026學(xué)年福建省泉州五中七年級(jí)上學(xué)期期中測(cè)試英語(yǔ)試卷
- 聯(lián)合辦公合同范本
- 2025年生物多樣性保護(hù)與生態(tài)修復(fù)項(xiàng)目可行性研究報(bào)告
- 2025年黑龍江省檢察院公益訴訟業(yè)務(wù)競(jìng)賽測(cè)試題及答案解析
- 一氧化碳中毒救治課件
- 廣東事業(yè)單位歷年考試真題及答案
- 《會(huì)計(jì)信息化工作規(guī)范》解讀(楊楊)
- 工程機(jī)械設(shè)備租賃服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 高海拔地區(qū)GNSS大壩監(jiān)測(cè)技術(shù)研究
- 實(shí)施指南(2025)《DL-T 1630-2016氣體絕緣金屬封閉開(kāi)關(guān)設(shè)備局部放電特高頻檢測(cè)技術(shù)規(guī)范》
評(píng)論
0/150
提交評(píng)論