2025年貴州省遵義市航天高級中學數(shù)學高二上期末檢測模擬試題含解析_第1頁
2025年貴州省遵義市航天高級中學數(shù)學高二上期末檢測模擬試題含解析_第2頁
2025年貴州省遵義市航天高級中學數(shù)學高二上期末檢測模擬試題含解析_第3頁
2025年貴州省遵義市航天高級中學數(shù)學高二上期末檢測模擬試題含解析_第4頁
2025年貴州省遵義市航天高級中學數(shù)學高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年貴州省遵義市航天高級中學數(shù)學高二上期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當圓的圓心到直線的距離最大時,()A B.C. D.2.若,則復數(shù)在復平面內(nèi)對應的點在()A.曲線上 B.曲線上C.直線上 D.直線上3.在流行病學中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天4.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點,依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.5.已知F是拋物線x2=y(tǒng)的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為()A. B.C.1 D.6.如果向量,,共面,則實數(shù)的值是()A. B.C. D.7.直線的傾斜角為()A. B.C. D.8.已知中,角,,的對邊分別為,,,且,,成等比數(shù)列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形9.設(shè)點關(guān)于坐標原點的對稱點是B,則等于()A.4 B.C. D.210.直線平分圓的周長,過點作圓的一條切線,切點為,則()A.5 B.C.3 D.11.已知拋物線的焦點與橢圓的一個焦點重合,過坐標原點作兩條互相垂直的射線,,與分別交于,則直線過定點()A. B.C. D.12.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動點,且滿足,則四棱錐體積的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的前項和為,則的值為_____14.過點作圓的兩條切線,切點為A,B,則直線的一般式方程為___________.15.以下四個關(guān)于圓錐曲線的命題中:①設(shè)A、B為兩個定點,k為非零常數(shù),若,則動點P的軌跡為雙曲線;②拋物線焦點坐標是;③過定圓C上一定點A作圓的動弦AB,O為坐標原點,若,則動點P的軌跡為橢圓;④曲線與曲線(且)有相同的焦點其中真命題的序號為______(寫出所有真命題的序號.)16.若,則與向量同方向的單位向量的坐標為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線經(jīng)過兩條直線和的交點,且與直線垂直(1)求直線的一般式方程;(2)若圓的圓心為點,直線被該圓所截得的弦長為,求圓的標準方程18.(12分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標原點,當m為何值時,=0.19.(12分)已知數(shù)列的前項和為,且.(1)求的通項公式;(2)求數(shù)列的前項和.20.(12分)設(shè)a,b是實數(shù),若橢圓過點,且離心率為.(1)求橢圓E的標準方程;(2)過橢圓E的上頂點P分別作斜率為,的兩條直線與橢圓交于C,D兩點,且,試探究過C,D兩點的直線是否過定點?若過定點,求出定點坐標;否則,說明理由.21.(12分)已知三棱柱的側(cè)棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.22.(10分)已知滿足,.(1)求證:是等差數(shù)列,求的通項公式;(2)若,的前項和是,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.2、B【解析】根據(jù)復數(shù)的除法運算,先化簡,進而求出,再由復數(shù)的幾何意義,即可得出結(jié)果.【詳解】因為,所以,因此復數(shù)在復平面內(nèi)對應的點為,可知其在曲線上.故選:B3、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應該要分類討論,有時還應善于運用整體代換思想簡化運算過程4、D【解析】由已知可判斷出所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,然后求和可得答案.【詳解】最底層上面第一個正方體的棱長為,其體積為,上面第二個正方體的棱長為,其體積為,上面第三個正方體的棱長為,其體積為,所有這些正方體的體積構(gòu)成首項為,公比為的等比數(shù)列,其前項和為,當,,所以所有這些正方體的體積之和將趨近于.故選:D.5、B【解析】根據(jù)拋物線的方程求出準線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準線的距離,列出方程求出,的中點縱坐標,求出線段的中點到軸的距離【詳解】解:拋物線的焦點準線方程,設(shè),,,解得,線段的中點縱坐標為,線段的中點到軸的距離為,故選:B【點睛】本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉(zhuǎn)化為到準線的距離,屬于基礎(chǔ)題6、B【解析】設(shè),由空間向量的坐標運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設(shè),可得,解得.故選:B.7、D【解析】由直線斜率概念可寫出傾斜角的正切值,進而可求出傾斜角.【詳解】因為直線的斜率為,所以傾斜角.故選D【點睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.8、B【解析】根據(jù)題意求出,結(jié)合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎(chǔ)題.9、A【解析】求出點關(guān)于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結(jié)果.【詳解】點關(guān)于坐標原點的對稱點是故選:A10、B【解析】根據(jù)圓的性質(zhì),結(jié)合圓的切線的性質(zhì)進行求解即可.【詳解】由,所以該圓的圓心為,半徑為,因為直線平分圓的周長,所以圓心在直線上,故,因此,,所以有,所以,故選:B11、A【解析】由橢圓方程可求得坐標,由此求得拋物線方程;設(shè),與拋物線方程聯(lián)立可得韋達定理的形式,根據(jù)可得,由此構(gòu)造方程求得,根據(jù)直線過定點的求法可求得定點.【詳解】由橢圓方程知其焦點坐標為,又拋物線焦點,,解得:,則拋物線的方程為,由題意知:直線斜率不為,可設(shè),由得:,則,即,設(shè),,則,,,,,解得:或;又與坐標原點不重合,,,當時,,直線恒過定點.故選:A.【點睛】思路點睛:本題考查直線與拋物線綜合應用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設(shè)直線方程,與拋物線方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達定理的形式;③利用韋達定理表示出已知中的等量關(guān)系,代入韋達定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.12、D【解析】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,分析可知點的軌跡是以點、為焦點的橢圓,求出橢圓的方程,可知當點為橢圓與棱或的交點時,點到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,設(shè)點,其中,,則、,因為平面,平面,則,所以,,同理可得,所以,,所以點的軌跡是以點、為焦點,且長軸長為的橢圓的一部分,則,,,所以,點的軌跡方程為,點到平面的距離為,當點為曲線與棱或棱的交點時,點到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列前項和公式的特點列方程,解方程求得的值.【詳解】由于等比數(shù)列前項和,本題中,故.故填:.【點睛】本小題主要考查等比數(shù)列前項和公式的特點,考查觀察與思考的能力,屬于基礎(chǔ)題.14、【解析】已知圓的圓心,點在以為直徑的圓上,兩圓相減就是直線的方程.【詳解】,圓心,點在以為直徑的圓上,,所以圓心是,以為直徑的圓的圓的方程是,直線是兩圓相交的公共弦所在直線,所以兩圓相減就是直線的方程,,所以直線的一般式方程為.故答案為:【點睛】結(jié)論點睛:過圓外一點引圓的切線,那么以圓心和圓外一點連線段為直徑的圓與已知圓相減,就是切點所在直線方程,或是兩圓相交,兩圓相減,就是公共弦所在直線方程.15、②④##④②【解析】利用雙曲線定義判斷命題①;寫出拋物線焦點判斷命題②;分析點P滿足的關(guān)系判斷命題③;按取值討論計算半焦距判斷命題④作答.【詳解】對于①,因雙曲線定義中要求,則命題①不正確;對于②,拋物線化為:,其焦點坐標是,命題②正確;對于③,令定圓C的圓心為C,因,則點P是弦AB的中點,當P與C不重合時,有,點P在以線段AC為直徑的圓上,當P與C重合時,點P也在以線段AC為直徑的圓上,因此,動點P的軌跡是以線段AC為直徑的圓(除A點外),則命題③不正確;對于④,曲線的焦點為,當時,橢圓中半焦距c滿足:,其焦點為,當時,雙曲線中半焦距滿足:,其焦點為,因此曲線與曲線(且)有相同的焦點,命題④正確,所以真命題的序號為②④.故答案為:②④【點睛】易錯點睛:橢圓長短半軸長分別為a,b,半焦距為c滿足關(guān)系式:;雙曲線的實半軸長、虛半軸長、半焦距分別為、、滿足關(guān)系式:,在同一問題中出現(xiàn)認真區(qū)分,不要混淆.16、【解析】由空間向量的模的計算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因為,所以,所以與向量同方向的單位向量的坐標為,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意求出兩直線的交點,再求出所求直線的斜率,用點斜式寫出直線的方程;(2)根據(jù)題意求出圓的半徑,由圓心寫出圓的標準方程【小問1詳解】解:由題意知,解得,直線和的交點為;設(shè)直線的斜率為,與直線垂直,;直線的方程為,化為一般形式為;【小問2詳解】解:設(shè)圓的半徑為,則圓心為到直線的距離為,由垂徑定理得,解得,圓的標準方程為18、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點得出的值,進而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達定理結(jié)合數(shù)量積公式證明即可【小問1詳解】由題意,橢圓=1的右焦點為(1,0),拋物線y2=2px的焦點為(,0),所以,解得p=2,所以拋物線的方程為y2=4x;【小問2詳解】因為直線y=x+m與拋物線C交于A,B兩點,設(shè)A(x1,y1),B(x2,y2),聯(lián)立方程組,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因為,又=(x1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.19、(1);(2).【解析】(1)利用,結(jié)合已知條件,即可容易求得通項公式;(2)根據(jù)(1)中所求,對數(shù)列進行裂項求和,即可求得.【小問1詳解】當時,.當時,,因為當時,,所以.【小問2詳解】因為,所以,故數(shù)列的前項和.20、(1);(2)過定點,坐標為.【解析】(1)根據(jù)橢圓的離心率公式,結(jié)合代入法進行求解即可;(2)根據(jù)直線斜率公式和一元二次方程根與系數(shù)的關(guān)系進行求解即可.【小問1詳解】因為橢圓離心率為,所以有.橢圓過點,所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設(shè)直線的方程為:,若,由橢圓的對稱性可知:,不符合題意,當時,直線的方程與橢圓方程聯(lián)立得:,設(shè),,,因為,所以,把代入得:,所以有或,解得:或,當時,直線,直線恒過定點,此時與點重合,不符合題意,當時,,直線恒過點,當直線不存在斜率時,此時,,因為,所以,兩點不在橢圓上,不符合題意,綜上所述:過C,D兩點的直線過定點,定點坐標為.【點睛】關(guān)鍵點睛:根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論