版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省鹽城市景山中學2025年數(shù)學高二第一學期期末達標檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.2.已知函數(shù)只有一個零點,則實數(shù)的取值范圍是()A B.C. D.3.設(shè)函數(shù)是奇函數(shù)的導函數(shù),且,當時,,則不等式的解集為()A. B.C. D.4.若,則()A. B.C. D.5.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數(shù)為()A. B.C. D.6.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.7.已知直線與平行,則a的值為()A.1 B.﹣2C. D.1或﹣28.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則9.設(shè)為坐標原點,直線與拋物線C:交于,兩點,若,則的焦點坐標為()A. B.C. D.10.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內(nèi)的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上11.設(shè)是等差數(shù)列的前項和,已知,,則等于()A. B.C. D.12.從裝有2個紅球和2個白球的袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.取出的球至少有1個紅球;取出的球都是紅球B.取出的球恰有1個紅球;取出的球恰有1個白球C.取出的球至少有1個紅球;取出的球都是白球D.取出的球恰有1個白球;取出的球恰有2個白球二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則=________.14.已知正數(shù)、滿足,則的最大值為__________15.命題“若實數(shù)a,b滿足,則且”是_______命題(填“真”或“假”).16.以點為圓心,為半徑的圓的標準方程是_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知定點,動點與連線的斜率之積.(1)設(shè)動點的軌跡為,求的方程;(2)若是上關(guān)于軸對稱的兩個不同點,直線與軸分別交于點.試判斷以為直徑的圓是否過定點,如經(jīng)過,求出定點坐標;如不過定點,請說明理由.18.(12分)已知橢圓的左、右焦點分別為,且,直線過與交于兩點,的周長為8(1)求的方程;(2)過作直線交于兩點,且向量與方向相同,求四邊形面積的取值范圍19.(12分)設(shè)函數(shù)(1)求的值;(2)求的極大值20.(12分)已知函數(shù),其中,.(1)當時,求曲線在點處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點,,分別在,上,且.求證:(1)、、、四點共面;(2)與的交點在直線上22.(10分)設(shè)函數(shù),其中,為自然對數(shù)的底數(shù).(1)討論單調(diào)性;(2)證明:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷2、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點,利用導數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個零點,等價于函數(shù)的圖像與的圖像只有一個交點,,求導,令,得當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增;當時,,函數(shù)在上單調(diào)遞減;故當時,函數(shù)取得極小值;當時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實數(shù)的取值范圍是故選:B【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.3、D【解析】設(shè),則,分析可得為偶函數(shù)且,求出的導數(shù),分析可得在上為減函數(shù),進而分析可得上,,在上,,結(jié)合函數(shù)的奇偶性可得上,,在上,,又由即,則有或,據(jù)此分析可得答案【詳解】根據(jù)題意,設(shè),則,若奇函數(shù),則,則有,即函數(shù)為偶函數(shù),又由,則,則,,又由當時,,則在上為減函數(shù),又由,則在上,,在上,,又由為偶函數(shù),則在上,,在上,,即,則有或,故或,即不等式的解集為;故選:D4、D【解析】設(shè),計算出、的值,利用平方差公式可求得結(jié)果.【詳解】設(shè)由已知可得,,因此,.故選:D.5、B【解析】由直線方程的性質(zhì)依次判斷各命題即可得出結(jié)果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.6、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準線的拋物線故所求M的軌跡方程為考點:軌跡方程7、A【解析】根據(jù)題意可得,解之即可得解.【詳解】解:因為直線與平行,所以,解得.故選:A.8、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質(zhì)可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D9、B【解析】根據(jù)題中所給的條件,結(jié)合拋物線的對稱性,可知,從而可以確定出點的坐標,代入方程求得的值,進而求得其焦點坐標,得到結(jié)果.【詳解】因為直線與拋物線交于兩點,且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點坐標為,故選:B.【點睛】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識點有直線與拋物線的交點,拋物線的對稱性,點在拋物線上的條件,拋物線的焦點坐標,屬于簡單題目.10、A【解析】根據(jù)題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設(shè),由題意,得到,,再由得到,求出點的軌跡,即可得出結(jié)果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內(nèi)的一動點,所以可設(shè),因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于??碱}型.11、C【解析】依題意有,解得,所以.考點:等差數(shù)列的基本概念.【易錯點晴】本題主要考查等差數(shù)列的基本概念.在解有關(guān)等差數(shù)列的問題時可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數(shù)列的通項公式及前項和公式,共涉及五個量,知其中三個就能求另外兩個,即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準它們的值.運用方程的思想解等差數(shù)列是常見題型,解決此類問題需要抓住基本量、,掌握好設(shè)未知數(shù)、列出方程、解方程三個環(huán)節(jié),常通過“設(shè)而不求,整體代入”來簡化運算12、D【解析】利用互斥事件、對立事件的定義逐一判斷即可.【詳解】A答案中的兩個事件可以同時發(fā)生,不是互斥事件B答案中的兩個事件可以同時發(fā)生,不是互斥事件C答案中的兩個事件不能同時發(fā)生,但必有一個發(fā)生,既是互斥事件又是對立事件D答案中的兩個事件不能同時發(fā)生,也可以都不發(fā)生,故是互斥而不對立事件故選:D【點睛】本題考查的是互斥事件和對立事件的概念,較簡單.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)對數(shù)的運算性質(zhì)得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項公式化簡可得值.【詳解】因為,所以,即數(shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點睛】本題考查等比數(shù)列的定義和通項公式以及對數(shù)的運算性質(zhì),熟練運用相應(yīng)的公式即可,屬于基礎(chǔ)題.14、【解析】直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學生的計算能力.15、假【解析】列舉特殊值,判斷真假命題.【詳解】當時,,所以,命題“若實數(shù)a,b滿足,則且”是假命題.故答案為:假16、【解析】直接根據(jù)已知寫出圓的標準方程得解.【詳解】解:由題得圓的標準方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)以為直徑的圓過定點,定點坐標為和.【解析】(1)設(shè)動點的坐標,利用斜率坐標公式結(jié)合已知列式即可作答.(2)設(shè)上任意一點,求出點M,N的坐標,再求出以為直徑的圓的方程即可分析作答.【小問1詳解】設(shè)點,則直線PA,PB的斜率分別為:,,依題意,,化簡整理得:,所以的方程是:.【小問2詳解】由(1)知,令是上任意一點,則點,直線:,則點,直線:,則點,以MN為直徑的圓上任意一點,當點Q與M,N都不重合時,,有,當點Q與M,N之一重合時,也成立,因此,以MN為直徑的圓的方程為:,化簡整理得:,而,即,則以MN為直徑的圓的方程化為:,顯然當時,恒有,即圓恒過兩個定點和,所以以為直徑的圓過定點,定點坐標為和.【點睛】知識點睛:以點為直徑兩個端點的圓的方程是:.18、(1);(2).【解析】(1)根據(jù)給定條件直接求出半焦距,及長半軸長即可作答.(2)根據(jù)給定條件結(jié)合橢圓的對稱性可得四邊形為平行四邊形,設(shè)出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理、對勾函數(shù)性質(zhì)計算作答.【小問1詳解】依題意,橢圓半焦距,由橢圓定義知,的周長,解得,,因此橢圓的方程為.【小問2詳解】依題意,直線的斜率不為0,設(shè)直線的方程為,,由消去并整理得:,則,,因與方向相同,即,又橢圓是以原點O為對稱中心的中心對稱圖形,于是得,即四邊形為平行四邊形,其面積,則,令,則,則,顯然在上單調(diào)遞增,則當時,,即,從而可得,所以四邊形面積的取值范圍為.【點睛】結(jié)論點睛:過定點的直線l:y=kx+b交圓錐曲線于點,,則面積;過定點直線l:x=ty+a交圓錐曲線于點,,則面積19、(1)-3(2)2【解析】(1)利用導數(shù)公式和法則求解;(2)令,利用極大值的定義求解.【小問1詳解】解:因為函數(shù),所以,所以;【小問2詳解】令,得,當或時,,當時,,所以當時,取得極大值.20、(1);(2)答案見解析.【解析】(1)當時,,求出函數(shù)的導函數(shù),再求出,,再利用點斜式求出切線方程;(2)首先求出函數(shù)的導函數(shù),再對參數(shù)分類討論,求出函數(shù)的單調(diào)區(qū)間;【詳解】解:(1)當時,,所以,所以,,所以切線方程為:,即:(2)函數(shù)定義域為,,因為,①當時,在上恒成立,所以函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;②當時,由得,由得,所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究含參函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.21、(1)證明見解析;(2)證明見解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點共面;(2)由條件證明與的交點既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點,∴,∴,∴,,,四點共面(2)∵,不是,的中點,∴,且,故為梯形∴與必相交,設(shè)交點為,∴平面,平面,∴平面,且平面,∴,即與的交點在直線上22、(1)答案見解析(2)答案見解析【解析】(1)求導
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南省大理州2025-2026學年九年級上學期物理期末統(tǒng)一測試試題(含答案)
- 2026年上海市楊浦區(qū)初三上學期一模數(shù)學試卷和參考答案
- 化工儀表知識課件
- 化工儀表安全培訓課件
- 飛機質(zhì)量控制培訓課件
- 城建集團下屬公司招15人補充備考考試題庫及答案解析
- 2026山東聊城市市屬事業(yè)單位招聘初級綜合類崗位人員87人備考考試試題及答案解析
- 2026海南安??毓捎邢挢熑喂菊衅?1人考試備考試題及答案解析
- 2026年池州青陽縣中醫(yī)醫(yī)院公開招聘勞務(wù)派遣工作人員1名備考考試試題及答案解析
- 2026年中國郵政儲蓄銀行股份有限公司普洱市分行招聘見習人員(10人)考試參考題庫及答案解析
- 綠電直連政策及新能源就近消納項目電價機制分析
- 2026屆江蘇省常州市生物高一第一學期期末檢測試題含解析
- 2026年及未來5年市場數(shù)據(jù)中國高溫工業(yè)熱泵行業(yè)市場運行態(tài)勢與投資戰(zhàn)略咨詢報告
- 教培機構(gòu)排課制度規(guī)范
- 2026年檢視問題清單與整改措施(2篇)
- 認識時間(課件)二年級下冊數(shù)學人教版
- 2026屆陜晉青寧四省高三語文二次聯(lián)考(天一大聯(lián)考)作文題目解析及范文:“避”的抉擇價值判斷與人生擔當
- 【四年級】【數(shù)學】【秋季上】期末家長會:數(shù)海引航愛伴成長【課件】
- 律師掛靠協(xié)議書
- (2025)意大利多學科工作組共識聲明:努南綜合征的多學科治療
- 車位使用權(quán)抵債協(xié)議書
評論
0/150
提交評論