版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆四川省眉山實(shí)驗(yàn)高級中學(xué)數(shù)學(xué)高二上期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,則滿足的的最小值為()A.30 B.31C.32 D.332.已知雙曲線,過點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),則能使點(diǎn)P為線段AB中點(diǎn)的直線l的條數(shù)為()A.0 B.1C.2 D.33.已知兩圓相交于兩點(diǎn)和,兩圓的圓心都在直線上,則的值為A. B.2C.3 D.04.的二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第()項(xiàng).A.6 B.5C.4和6 D.5和75.如圖,在直三棱柱中,,,E是的中點(diǎn),則直線BC與平面所成角的正弦值為()A. B.C. D.6.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.7.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.8.已知拋物線,則其焦點(diǎn)到準(zhǔn)線的距離為()A. B.C.1 D.49.記為等差數(shù)列的前n項(xiàng)和,有下列四個(gè)等式,甲:;乙:;丙:;丁:.如果只有一個(gè)等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁10.已知函數(shù),則()A.3 B.C. D.11.在一個(gè)正方體中,為正方形四邊上的動(dòng)點(diǎn),為底面正方形的中心,分別為中點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),線段與互相平分,則滿足的實(shí)數(shù)的值有A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)12.已知數(shù)列滿足,,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在區(qū)間上的最大值是,則__________14.拋物線的準(zhǔn)線方程是______15.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A、B的距離之比為定值(且)的點(diǎn)的軌跡是圓”.后來人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,,,點(diǎn)滿足,則點(diǎn)P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.16.已知橢圓的兩個(gè)焦點(diǎn)分別為,,,點(diǎn)在橢圓上,若,且的面積為4,則橢圓的標(biāo)準(zhǔn)方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),記f(x)的導(dǎo)數(shù)為f′(x).若曲線f(x)在點(diǎn)(1,f(1))處的切線斜率為﹣3,且x=2時(shí)y=f(x)有極值,(Ⅰ)求函數(shù)f(x)的解析式;(Ⅱ)求函數(shù)f(x)在[﹣1,1]上的最大值和最小值18.(12分)點(diǎn)A、B分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,.(1)求點(diǎn)P的坐標(biāo);(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.19.(12分)如圖1,已知矩形ABCD,,,E,F(xiàn)分別為AB,CD的中點(diǎn),將ABCD卷成一個(gè)圓柱,使得BC與AD重合(如圖2),MNGH為圓柱的軸截面,且平面平面MNGH,NG與曲線DE交于點(diǎn)P(1)證明:平面平面MNGH;(2)判斷平面PAE與平面PDH夾角與的大小,并說明理由20.(12分)已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若關(guān)于的方程在上有解,求的取值范圍.21.(12分)如圖,分別是橢圓C:的左,右焦點(diǎn),點(diǎn)P在橢圓C上,軸,點(diǎn)A是橢圓與x軸正半軸的交點(diǎn),點(diǎn)B是橢圓與y軸正半軸的交點(diǎn),且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點(diǎn),若點(diǎn),,試探究點(diǎn)M,,N是否一定共線?說明理由.22.(10分)已知雙曲線()的一個(gè)焦點(diǎn)是,離心率.(1)求雙曲線的方程;(2)若斜率為的直線與雙曲線交于兩個(gè)不同的點(diǎn),線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由條件可得得出,再由解出的范圍,得出答案.【詳解】由,則由,即,即,所以所以滿足的的最小值為為32故選:C2、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時(shí),與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個(gè)不同點(diǎn),則,,又根據(jù)是線段的中點(diǎn),則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時(shí),過點(diǎn)的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點(diǎn)的直線方程為或,①當(dāng)斜率存在時(shí)有,得(*)當(dāng)直線與雙曲線相交于兩個(gè)不同點(diǎn),則必有:,即又方程(*)的兩個(gè)不同的根是兩交點(diǎn)、的橫坐標(biāo),又為線段的中點(diǎn),,即,,使但使,因此當(dāng)時(shí),方程①無實(shí)數(shù)解故過點(diǎn)與雙曲線交于兩點(diǎn)、且為線段中點(diǎn)的直線不存在②當(dāng)時(shí),經(jīng)過點(diǎn)的直線不滿足條件.綜上,符合條件的直線不存在故選:A3、C【解析】根據(jù)條件知:兩圓的圓心的所在的直線與兩圓的交點(diǎn)所在的直線垂直,以及兩圓的交點(diǎn)的中點(diǎn)在兩圓的圓心的所在的直線上,由此得到方程,得解.【詳解】由已知兩圓的交點(diǎn)與兩圓的圓心的所在的直線垂直,,所以,又因?yàn)閮蓤A的交點(diǎn)的中點(diǎn)在兩圓的圓心所在的直線上,所以,解得:,所以,故選.【點(diǎn)睛】此題主要考查圓與圓的位置關(guān)系,解答此題的關(guān)鍵是需知兩圓的圓心所在的直線與兩圓的交點(diǎn)所在的直線垂直,并且兩圓的交點(diǎn)的中點(diǎn)在兩圓的圓心所在的直線上,此題屬于基礎(chǔ)題.4、A【解析】由二項(xiàng)展開的中間項(xiàng)或中間兩項(xiàng)二項(xiàng)式系數(shù)最大可得解.【詳解】因?yàn)槎?xiàng)式展開式一共11項(xiàng),其中中間項(xiàng)的二項(xiàng)式系數(shù)最大,易知當(dāng)r=5時(shí),最大,即二項(xiàng)展開式中,二項(xiàng)式系數(shù)最大的為第6項(xiàng).故選:A5、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因?yàn)?,所以,故直線BC與平面所成角的正弦值為.故選:D.6、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.7、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因?yàn)橹本€的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.8、B【解析】化簡拋物線的方程為,求得,即為焦點(diǎn)到準(zhǔn)線的距離.【詳解】由題意,拋物線,即,解得,即焦點(diǎn)到準(zhǔn)線的距離是故選:B9、D【解析】分別假設(shè)甲、乙、丙、丁不成立,驗(yàn)證得到答案【詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時(shí)與②矛盾;A錯(cuò),若乙不成立,則,由①,③可得,此時(shí);與②矛盾;B錯(cuò),若丙不成立,則,由①,③可得,此時(shí);與②矛盾;C錯(cuò),若丁不成立,則,由①,③可得,此時(shí);,D對,故選:D.10、B【解析】由導(dǎo)數(shù)運(yùn)算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B11、C【解析】因?yàn)榫€段D1Q與OP互相平分,所以四點(diǎn)O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時(shí),Q一定在線段ON上運(yùn)動(dòng),只有當(dāng)P為C1D1的中點(diǎn)時(shí),Q與點(diǎn)M重合,此時(shí)λ=1,符合題意若P在線段C1B1與線段B1A1上時(shí),在平面ABCD找不到符合條件Q;在P在線段D1A1上時(shí),點(diǎn)Q在直線OM上運(yùn)動(dòng),只有當(dāng)P為線段D1A1的中點(diǎn)時(shí),點(diǎn)Q與點(diǎn)M重合,此時(shí)λ=0符合題意,所以符合條件的λ值有兩個(gè)故選C.12、C【解析】采用疊加法求出,由可得,結(jié)合對勾函數(shù)性質(zhì)分析在或6取到最小值,代值運(yùn)算即可求解.【詳解】因?yàn)?,所以,,,,式相加可得,所以,,?dāng)且僅當(dāng)取到,但,,所以時(shí),當(dāng)時(shí),,,所以的最小值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】由函數(shù),又由,則,根據(jù)二次函數(shù)的性質(zhì),即可求解函數(shù)的最大值,得到答案.【詳解】由函數(shù),因?yàn)椋?,?dāng)時(shí),則,所以.【點(diǎn)睛】本題主要考查了余弦函數(shù)的性質(zhì),以及二次函數(shù)的圖象與性質(zhì),其中解答中根據(jù)余弦函數(shù),轉(zhuǎn)化為關(guān)于的二次函數(shù),利用二次函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.14、【解析】由題意可得p=4,所以準(zhǔn)線方程,填15、①.②.【解析】設(shè)點(diǎn)P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對化簡,結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點(diǎn)坐標(biāo)為,則由,得,化簡得,即.因?yàn)?,所以因?yàn)辄c(diǎn)P在圓上,故所以,故的最小值為.故答案為:,16、【解析】由題意得到為直角三角形.設(shè),,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程的方程組,消元后可求得的值.【詳解】由題可知,∴,又,代入上式整理得,由得為直角三角形又的面積為4,設(shè),,則解得所以橢圓的標(biāo)準(zhǔn)方程為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值為1,最小值為﹣3【解析】(Ⅰ)求導(dǎo)可得f′(x)的解析式,根據(jù)導(dǎo)數(shù)的幾何意義,可得k=f′(1)=-3,又在x=2處有極值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,討論f(x)在﹣1<x<0,0<x<1上的單調(diào)性,即可求得f(x)的極值,檢驗(yàn)邊界值,即可得答案.【詳解】(Ⅰ)由題意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,當(dāng)﹣1<x<0時(shí),f′(x)>0,f(x)在(﹣1,0)是增函數(shù),當(dāng)0<x<1時(shí),f′(x)<0,f(x)在(0,1)是減函數(shù),所以f(x)的極大值為f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值為1,最小值為﹣318、(1)(,).(2)【解析】(1)根據(jù)條件列關(guān)于P點(diǎn)坐標(biāo)得方程組,解得結(jié)果,(2)先根據(jù)點(diǎn)到直線距離公式結(jié)合條件解得點(diǎn)M坐標(biāo),再建立的函數(shù)解析式,最后根據(jù)二次函數(shù)性質(zhì)求最小值.【詳解】解:(1)由已知可得點(diǎn)A(-6,0),F(4,0)設(shè)點(diǎn)P(,),則={+6,},={-4,},由已知可得則2+9-18=0,解得=或=-6.由于>0,只能=,于是=.∴點(diǎn)P的坐標(biāo)是(,).(2)直線AP的方程是-+6=0.設(shè)點(diǎn)M(,0),則M到直線AP的距離是.于是=,又-6≤≤6,解得=2.橢圓上的點(diǎn)(,)到點(diǎn)M的距離為,則,由于-6≤≤6,∴當(dāng)=時(shí),取得最小值.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系,考查基本分析求解能力,屬中檔題.19、(1)證明見解析(2)平面PAE與平面PDH夾角大于,理由見解析【解析】(1)由面面垂直證明,然后得證平面MNGH后可得面面垂直;(2)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求出二面角的余弦可得結(jié)論【小問1詳解】如圖O,為圓柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因?yàn)槠矫鍼AE,所以平面平面MNGH;【小問2詳解】因?yàn)?,所以得,如圖,以為坐標(biāo)原點(diǎn),以,,所在直線為x,y,z軸建立空間直角坐標(biāo)系,則可知,,,,,則,,,,設(shè)平面AEP的法向量為,則,令,得,設(shè)平面DHP的法向量為,則,即令,得,,設(shè)平面PAE與平面PDH夾角為,則,,因?yàn)?,即,所以平面PAE與平面PDH夾角大于20、(1)(2)【解析】(1)求,由條件可得,得出關(guān)于的方程組,求解可得;(2)令,注意,所以在具有單調(diào)性時(shí),則方程無解,求,對分類討論,求出單調(diào)區(qū)間,結(jié)合函數(shù)值的變化趨勢,即可求得結(jié)論.【詳解】解:(1),因?yàn)?,所以,解得,,所?(2)令,則.令,則在上單調(diào)遞增.當(dāng),即時(shí),,所以單調(diào)遞增,又,所以;當(dāng),即時(shí),則存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又,則.當(dāng)時(shí),,所以在上有解.綜上,的取值范圍為.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義求參數(shù),考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)區(qū)間、函數(shù)零點(diǎn)的問題,考查分類討論思想,屬于較難題.21、(1)(2)不一定共線,理由見解析【解析】(1)由橢圓定義可得a,利用∽△BOA可解;(2)考察軸時(shí)的情況,分析可知M,,N不一定共線.【小問1詳解】由題意得,,設(shè),,代入橢圓C的方程得,,可得.可得.由,,所以∽△BOA,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手機(jī)購機(jī)協(xié)議書
- 苗木抵債協(xié)議書
- 蘋果退款協(xié)議書
- 蜀大俠合同協(xié)議
- 認(rèn)種樹木協(xié)議書
- 讓利協(xié)議書模板
- 評估房產(chǎn)協(xié)議書
- 試管嬰兒協(xié)議書
- 布匹購銷協(xié)議書
- 2025六枝特區(qū)公共汽車運(yùn)輸公司招聘16人備考核心題庫及答案解析
- 河北省石家莊市裕華區(qū)石家莊市第四十中學(xué)2024-2025學(xué)年七年級上學(xué)期期中地理試題(含答案)
- 手術(shù)清點(diǎn)記錄評分標(biāo)準(zhǔn)
- 中國戲曲劇種鑒賞智慧樹知到期末考試答案章節(jié)答案2024年上海戲劇學(xué)院等跨校共建
- pet薄膜生產(chǎn)工藝
- 二年級【語文(統(tǒng)編版)】語文園地一(第一課時(shí))課件
- 肝臟的營養(yǎng)與保健知識講座
- 2024屆遼寧省撫順市名校數(shù)學(xué)九年級第一學(xué)期期末達(dá)標(biāo)檢測模擬試題含解析
- 2023年廣東省佛山市順德區(qū)小升初數(shù)學(xué)試卷(含答案)
- 富士相機(jī)使用說明書
- 區(qū)域經(jīng)濟(jì)空間結(jié)構(gòu)理論之增長極理論
- 北京工商大學(xué)大一高等數(shù)學(xué)上冊期末考試卷及答案
評論
0/150
提交評論