版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南京梅山高級中學(xué)2025年高二上數(shù)學(xué)期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,2.函數(shù),則不等式的解集是()A. B.C. D.3.已知等差數(shù)列的前n項和為,且,則()A.2 B.4C.6 D.84.直線在y軸上的截距為()A. B.C. D.5.某家大型超市近10天的日客流量(單位:千人次)分別為:2.5、2.8、4.4、3.6.下列圖形中不利于描述這些數(shù)據(jù)的是()A.散點圖 B.條形圖C.莖葉圖 D.扇形圖6.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.7.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列9.已知曲線,下列命題錯誤的是()A.若,則是橢圓,其焦點在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點,,為曲線的兩個焦點,則10.已知雙曲線的左焦點為F,O為坐標(biāo)原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.11.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù)1,3,6,10,…構(gòu)成的數(shù)列的第n項,則的值為()A.1225 B.1275C.1326 D.136212.已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)滿足,則的最小值為()A B.C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.等軸(實軸長與虛軸長相等)雙曲線的離心率_______14.拋物線上一點到其焦點的距離為,則的值為______15.已知曲線的方程是,給出下列四個結(jié)論:①曲線C恰好經(jīng)過4個整點(即橫、縱坐標(biāo)均為整數(shù)的點);②曲線有4條對稱軸;③曲線上任意一點到原點的距離都不小于1;④曲線所圍成圖形的面積大于4;其中,所有正確結(jié)論的序號是_____16.橢圓方程為橢圓內(nèi)有一點,以這一點為中點的弦所在的直線方程為,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),是的一個極值點.(1)求b的值;(2)當(dāng)時,求函數(shù)的最大值.18.(12分)如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.(1)求動點的軌跡;(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;(3)過點分別作直線交曲線于兩點,若,直線是否經(jīng)過定點?若是,求出該定點,若不是,說明理由.19.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內(nèi)的射影O恰好為AD的中點,M為AB的中點.(1)求證:平面;(2)求平面與平面夾角的余弦值.20.(12分)已知拋物線過點,O為坐標(biāo)原點(1)求焦點的坐標(biāo)及其準(zhǔn)線方程;(2)拋物線C在點A處的切線記為l,過點A作與切線l垂直的直線,與拋物線C的另一個交點記為B,求的面積21.(12分)已知函數(shù)(為自然對數(shù)的底數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有且僅有2個零點,求實數(shù)的值.22.(10分)設(shè)數(shù)列的前項和為,為等比數(shù)列,且,(1)求數(shù)列和的通項公式;(2)設(shè),求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.2、A【解析】利用導(dǎo)數(shù)判斷函數(shù)單調(diào)遞增,然后進行求解.【詳解】對函數(shù)進行求導(dǎo):,因為,,所以,因為,所以f(x)是奇函數(shù),所以在R上單調(diào)遞增,又因為,所以的解集為.故選:A3、B【解析】根據(jù)等差數(shù)列前n項和公式,結(jié)合等差數(shù)列下標(biāo)的性質(zhì)、等差數(shù)列通項公式進行求解即可.【詳解】設(shè)等差數(shù)列的公差為,,,故選:B4、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D5、A【解析】根據(jù)數(shù)據(jù)的特征以及各統(tǒng)計圖表的特征分析即可;【詳解】解:莖葉圖、條形圖、扇形圖均能將數(shù)據(jù)描述出來,并且能夠體現(xiàn)出數(shù)據(jù)的變化趨勢;散點圖表示因變量隨自變量而變化的大致趨勢,故用來描述該超市近10天的日客流量不是很合適;故選:A6、C【解析】由空間向量共面定理可得點四點共面,從而將求的最小值轉(zhuǎn)化為求點到平面的距離,再根據(jù)等體積法計算.【詳解】因為,由空間向量的共面定理可知,點四點共面,即點在平面上,所以的最小值為點到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點睛】共面定理的應(yīng)用:設(shè)是不共面的四點,則對空間任意一點,都存在唯一的有序?qū)崝?shù)組使得,說明:若,則四點共面.7、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.8、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.9、D【解析】根據(jù)橢圓和雙曲線的性質(zhì)以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當(dāng),則漸近線方程為,當(dāng),則漸近線方程為,故C正確;若,,則是雙曲線,其焦點在軸上,由雙曲線的定義可知,,故D錯誤;故選:D10、C【解析】由題意可得且,從而求出點的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設(shè)點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C11、B【解析】觀察前4項可得,從而可求得結(jié)果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B12、B【解析】由數(shù)量積的坐標(biāo)運算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知,,由,化簡可求離心率.【詳解】由題意可知,,兩邊同時平方,得,即,,所以離心率,故答案為:.14、【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,利用拋物線的定義將拋物線上的點到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再利用點到直線的距離公式進行求解.【詳解】將拋物線化為,由拋物線定義得點到準(zhǔn)線的距離為,即,解得故答案為:.15、②③④【解析】根據(jù)曲線方程作出曲線,即可根據(jù)題意判斷各結(jié)論的真假【詳解】曲線的簡圖如下:根據(jù)圖象以及方程可知,曲線C恰好經(jīng)過9個整點,它們是,,,所以①不正確;由圖可知,曲線有4條對稱軸,它們分別是軸,軸,直線和,②正確;由圖可知,曲線上任意一點到原點的距離都不小于1,③正確;由圖可知,曲線所圍成圖形的面積等于,④正確故答案為:②③④16、【解析】設(shè),利用“點差法”得到,即可求出離心率.【詳解】設(shè)直線與橢圓交于,則.因為AB中點,則.又,相減得:.所以所以所以,所以,即離心率.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先求出導(dǎo)函數(shù),再根據(jù)x=2是的一個極值點對應(yīng)x=2是導(dǎo)數(shù)為0的根即可求b的值;(2)根據(jù)(1)的結(jié)論求出函數(shù)的極值點,通過比較極值與端點值的大小從而確定出最大值.【小問1詳解】由題設(shè),.∵x=2是的一個極值點,∴x=2是的一個根,代入解得:.經(jīng)檢驗,滿足題意.【小問2詳解】由(1)知:,則.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+遞減遞增∵當(dāng)x∈(1,2)時,即在(1,2)上單調(diào)遞減;當(dāng)x∈(2,3)時,即在(2,3)上單調(diào)遞增.∴當(dāng)x∈[1,3]時,函數(shù)的最大值為與中的較大者.∴函數(shù)的最大值為.18、(1);(2)證明見解析;(3).【解析】(1)設(shè)點M,P,Q的坐標(biāo),將向量進行坐標(biāo)化,整理即可得軌跡方程;(2)設(shè)點,,直線的傾斜角互補,則兩直線斜率互為相反數(shù),用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關(guān)于與的等量關(guān)系,寫出直線AB的方程,將等量關(guān)系代入直線方程整理可得直線AB經(jīng)過的定點【詳解】(1)設(shè),,.由,得,即.因為,所以,所以.所以動點的軌跡為拋物線,其方程為.(2)證明:設(shè)點,,若直線的傾斜角互補,則兩直線斜率互為相反數(shù),又,,所以,,整理得,所以.(3)因為,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當(dāng)時,即直線經(jīng)過定點.【點睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點問題.19、(1)證明見解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因為O為在平面ABCD內(nèi)的射影,所以平面ABCD,因為平面ABCD,所以.如圖,連接BD,在中,.設(shè)CD的中點為P,連接BP,因為,,,所以,且,則.因為,所以,易知,所以.因為平面,平面,,所以平面.【小問2詳解】由(1)知平面ABCD,所以可以點O為坐標(biāo)原點,以O(shè)A,,所在直線分別為x,z,以平面ABCD內(nèi)過點O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,,,設(shè)平面的法向量為,,,則可取平面的一個法向量為.設(shè)平面的法向量為,,,則令,得平面的一個法向量為.設(shè)平面與平面的平面角為,由法向量的方向可知與法向量的夾角大小相等,所以,所以平面與平面夾角的余弦值為.20、(1)焦點,準(zhǔn)線方程;(2)12.【解析】(1)將點A坐標(biāo)代入求出,寫出拋物線方程即可作答.(2)由(1)的結(jié)論求出切線l的斜率,進而求得直線AB方程,聯(lián)立直線AB與拋物線C的方程,求出弦AB長及點O到直線AB距離計算作答.【小問1詳解】依題意,,解得,則拋物線的方程為:,所以拋物線的焦點,準(zhǔn)線方程為.【小問2詳解】顯然切線l的斜率存在,設(shè)切線l的方程為:,由消去x并整理得:,依題意得,解得,因直線,則直線AB的斜率為-1,方程為:,即,由消去x并整理得:,解得,因此有,而,則,而點到直線AB:的距離,則,所以的面積是12.21、(1)函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用導(dǎo)數(shù)研究的單調(diào)性、極值,從而求得的值.【小問1詳解】由,得,令,得或;令,得.∴函數(shù)的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五官科住院部制度
- 東莞消防安全制度
- 品德交通安全伴我行課件
- 2026年昭平縣公安局公開招聘警務(wù)輔助人員備考題庫及一套答案詳解
- 東莞市公安局橫瀝分局2025年第5批警務(wù)輔助人員招聘備考題庫及答案詳解參考
- 東莞市公安局水上分局麻涌水上派出所2025年第1批警務(wù)輔助人員招聘備考題庫及1套參考答案詳解
- 中共啟東市委組織部2026年校園招聘備考題庫及答案詳解1套
- 2025至2030中國抗結(jié)核藥物市場供需狀況及未來趨勢預(yù)測報告
- 2026中國汽車熱交換器行業(yè)運營態(tài)勢與應(yīng)用前景預(yù)測報告
- 2025至2030教育云計算服務(wù)模式創(chuàng)新與行業(yè)應(yīng)用深度研究報告
- 廢舊材料回收合同范本
- 2026年酒店服務(wù)員考試題及答案
- 普速鐵路行車技術(shù)管理課件 項目二 行車組織基礎(chǔ)
- 《(2025年)中國類風(fēng)濕關(guān)節(jié)炎診療指南》解讀課件
- 炎德·英才·名校聯(lián)考聯(lián)合體2026屆高三年級1月聯(lián)考語文試卷(含答及解析)
- 麥當(dāng)勞行業(yè)背景分析報告
- 中國心理行業(yè)分析報告
- 2025至2030中國生物芯片(微陣列和和微流控)行業(yè)運營態(tài)勢與投資前景調(diào)查研究報告
- 結(jié)核性支氣管狹窄的診治及護理
- 2025年鐵嶺衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試模擬測試卷附答案
- 急腹癥的識別與護理
評論
0/150
提交評論