版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省泰安市新泰市第二中學2025-2026學年高二上數(shù)學期末統(tǒng)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則a,b,c的大小關系為()A. B.C. D.2.已知函數(shù),其導函數(shù)的圖象如圖所示,則()A.在上為減函數(shù) B.在處取極小值C.在上為減函數(shù) D.在處取極大值3.某中學的“希望工程”募捐小組暑假期間走上街頭進行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進行的天數(shù)為()A.13 B.14C.15 D.164.已知雙曲線,則雙曲線的離心率為()A. B.C. D.5.已知,,則下列結論一定成立的是()A. B.C. D.6.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得7.已知實數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.8.下列直線中,傾斜角為45°的是()A. B.C. D.9.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.10.關于的不等式的解集為()A. B.C.或 D.11.已知雙曲線,且三個數(shù)1,,9成等比數(shù)列,則下列結論正確的是()A.的焦距為 B.的漸近線方程為C.的離心率為 D.的虛軸長為12.拋物線的焦點到直線的距離()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù)滿足,則的最小值是__________.14.對某市“四城同創(chuàng)”活動中100名志愿者的年齡抽樣調查統(tǒng)計后得到頻率分布直方圖(如圖),但是年齡組為的數(shù)據(jù)不慎丟失,則依據(jù)此圖可估計該市“四城同創(chuàng)”活動中志愿者年齡在的人數(shù)為________15.在等比數(shù)列中,若,是方程兩根,則________.16.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列為等差數(shù)列,公差,前項和為,,且成等比數(shù)列(1)求數(shù)列的通項公式(2)設,求數(shù)列的前項和18.(12分)如圖所示,在正方體中,點,,分別是,,的中點(1)證明:;(2)求直線與平面所成角的大小19.(12分)從①;②;③這三個條件中任選一個,補充在下面問題中,并作答設等差數(shù)列的前n項和為,,______;設數(shù)列的前n項和為,(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和注:作答前請先指明所選條件,如果選擇多個條件分別解答,按第一個解答計分20.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.(1)求直線的普通方程,曲線C的直角坐標方程;(2)設直線與曲線C相交于A,B兩點,點,求的值.21.(12分)如圖,在正四棱柱中,,,點在棱上,且平面(1)求的值;(2)若,求二面角的余弦值22.(10分)已知圓心C的坐標為,且是圓C上一點(1)求圓C的標準方程;(2)過點的直線l被圓C所截得的弦長為,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)給定條件構造函數(shù),再探討其單調性并借助單調性判斷作答.【詳解】令函數(shù),求導得,當時,,于是得在上單調遞減,而,則,即,所以,故選:A2、C【解析】首先利用導函數(shù)的圖像求和的解,進而得到函數(shù)的單調區(qū)間和極值點.【詳解】由導函數(shù)的圖象可知:當時,或;當時,或,所以的單調遞增區(qū)間為和,單調遞減區(qū)間為和,故在處取得極大值,在處取得極小值,在處取得極大值.故選:C.3、C【解析】由題意可得募捐構成了一個以10元為首項,以10元為公差的等差數(shù)列,設共募捐了天,然后建立關于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構成了一個以10元為首項,以10元為公差的等差數(shù)列,根據(jù)題意,設共募捐了天,則,解得或(舍去),所以,故選:4、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因為雙曲線,所以,所以雙曲線的離心率,故選:D.5、B【解析】根據(jù)不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.6、B【解析】A選項,當一真一假時也滿足條件,但不滿足為真命題;B選項,可以使用正弦定理和大邊對大角,大角對大邊進行證明;C選項,利用逆否命題的定義進行判斷,D選項,特稱命題的否定,把存在改為任意,把結論否定,故可判斷D選項.【詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯誤;命題,使得,則,使得,故D錯誤.故選:B7、D【解析】利用特殊值排除錯誤選項,利用函數(shù)單調性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D8、C【解析】由直線傾斜角得出直線斜率,再由直線方程求出直線斜率,即可求解.【詳解】由直線傾斜角為45°,可知直線的斜率為,對于A,直線斜率為,對于B,直線無斜率,對于C,直線斜率,對于D,直線斜率,故選:C9、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D10、C【解析】求出不等式對應方程的根,結合不等式和二次函數(shù)的關系,即可得到結果.【詳解】不等式對應方程的兩根為,因為,故可得,根據(jù)二次不等式以及二次函數(shù)的關系可得不等式的解集為或.故選:C.【點睛】本題考查含參二次不等式的求解,屬基礎題.11、D【解析】先求得的值,然后根據(jù)雙曲線的知識對選項進行分析,從而確定正確答案.【詳解】方程表示雙曲線,則,成等比數(shù)列,則,所以雙曲線方程為,所以,故雙曲線的焦距為,A選項錯誤.漸近線方程為,B選項錯誤.離心率,C選項錯誤.虛軸長,D選項正確.故選:D12、B【解析】由拋物線可得焦點坐標,結合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據(jù)點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】利用“1”代換,結合基本不等式求解.【詳解】因為,,所以,當且僅當,即時等號成立,所以當時,取得最小值8.故答案為:8.14、【解析】首先根據(jù)頻率分布直方圖計算出年齡在的頻率,從而可計算出年齡在的人數(shù).【詳解】年齡在的頻率為,所以年齡在的人數(shù)為.故答案為:.15、.【解析】由題意求得,,再結合等比數(shù)列的性質,即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的性質的應用,其中解答中熟練應用等比數(shù)列的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、②④【解析】根據(jù)直線與直線,直線與平面的位置關系依次判斷每個選項得到答案.詳解】若,則或,異面,或,相交,①錯誤;若,則,②正確;若,則或或與相交,③錯誤;若,則,④正確;故答案為:②④.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)成等比數(shù)列,有,即求解.(2)由(1)可得,,∴,再利用裂項相消法求和.【詳解】(1)由成等比數(shù)列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.18、(1)證明見解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結論.(2)以為坐標原點,分別以,,所在直線為,,軸,建立空間直角坐標系,利用向量法求解線面角.【小問1詳解】如圖,連接在正方體中,且因為,分別是,的中點,所以且又因為是的中點,所以,且,所以四邊形是平行四邊形,所以【小問2詳解】以為坐標原點,分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標系設,則,,,,,,設為平面的法向量因為,,,所以令,得設直線與平面所成角為,則因為,所以直線與平面所成角的大小為19、(1)條件選擇見解析,,(2)【解析】(1)設數(shù)列的首項為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數(shù)列通項與前n項和公式求解;(2)易知,再利用錯位相減法求解.【小問1詳解】解:設數(shù)列的首項為,公差為d,選①得,則,選②得,則,選③得,則,所以數(shù)列的通項公式為因為,所以當時,,則當時,,則,所以是以首項為2,公比為2的等比數(shù)列,所以【小問2詳解】因為,所以數(shù)列的前n項和①②①-②得∴,則20、(1)直線的普通方程為;曲線C的直角坐標方程為(2)【解析】(1)根據(jù)轉換關系將參數(shù)方程和極坐標方程轉化為直角坐標方程即可;(2)將直線的參數(shù)方程化為標準形式,代入曲線C的直角坐標方程,設點A,B對應的參數(shù)分別為,利用韋達定理即可得出答案.【小問1詳解】解:將直線的參數(shù)方程中的參數(shù)消去得,則直線的普通方程為,由曲線C的極坐標方程為,得,即,由得曲線C的直角坐標方程為;【小問2詳解】解:點滿足,故點在直線上,將直線的參數(shù)方程化為標準形式(為參數(shù)),代入曲線C的直角坐標方程為,得,設點A,B對應的參數(shù)分別為,則,所以.21、(1)答案見解析;(2).【解析】如圖,以點為原點,,,的方向分別為,,軸的正方向,建立空間直角坐標系,(1)設,由平面,可得,從而數(shù)量積為零,可求出的值,進而可求得的值;(2)利用空間向量求二面角的余弦值【詳解】解:(1)如圖,以點為原點,,,的方向分別為,,軸的正方向,建立空間直角坐標系,設,則點,,,則,因為平面,所以,所以,解得或當時,,,;當時,,,(2)因為,由(1)知,平面的一個法向量為設平面的法向量為,因為,,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漿紗漿染工沖突解決考核試卷含答案
- 銅響樂器制作工崗前理論能力考核試卷含答案
- 渠道維護工安全培訓效果測試考核試卷含答案
- 集成電路管殼制造工保密水平考核試卷含答案
- 硫回收裝置操作工操作規(guī)范考核試卷含答案
- 數(shù)字印刷員安全宣貫知識考核試卷含答案
- 牙骨雕刻工崗前安全宣教考核試卷含答案
- 礦用重型卡車輪胎換修工崗前技能綜合實踐考核試卷含答案
- 2024年湖北生態(tài)工程職業(yè)技術學院輔導員考試筆試題庫附答案
- 糧油購銷員崗前設備巡檢考核試卷含答案
- 基于灰色模型下的經濟發(fā)展生育意愿分析與預測
- 腸道屏障修復研究-洞察及研究
- 感染性心內膜炎護理查房
- 審計數(shù)據(jù)管理辦法
- 2025國開《中國古代文學(下)》形考任務1234答案
- 研發(fā)公司安全管理制度
- 兒童口腔診療行為管理學
- 瓷磚樣品發(fā)放管理制度
- 北京市2025學年高二(上)第一次普通高中學業(yè)水平合格性考試物理試題(原卷版)
- 短文魯迅閱讀題目及答案
- 肺部感染中醫(yī)護理
評論
0/150
提交評論