七年級下學(xué)期期末幾何壓軸題監(jiān)測數(shù)學(xué)試題培優(yōu)試卷_第1頁
七年級下學(xué)期期末幾何壓軸題監(jiān)測數(shù)學(xué)試題培優(yōu)試卷_第2頁
七年級下學(xué)期期末幾何壓軸題監(jiān)測數(shù)學(xué)試題培優(yōu)試卷_第3頁
七年級下學(xué)期期末幾何壓軸題監(jiān)測數(shù)學(xué)試題培優(yōu)試卷_第4頁
七年級下學(xué)期期末幾何壓軸題監(jiān)測數(shù)學(xué)試題培優(yōu)試卷_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖,A點(diǎn)的坐標(biāo)為(0,3),B點(diǎn)的坐標(biāo)為(﹣3,0),D為x軸上的一個(gè)動(dòng)點(diǎn)且不與B,O重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點(diǎn)M.(1)如圖,當(dāng)點(diǎn)D在線段OB的延長線上時(shí),①若D點(diǎn)的坐標(biāo)為(﹣5,0),求點(diǎn)E的坐標(biāo).②求證:M為BE的中點(diǎn).③探究:若在點(diǎn)D運(yùn)動(dòng)的過程中,的值是否是定值?如果是,請求出這個(gè)定值;如果不是,請說明理由.(2)請直接寫出三條線段AO,DO,AM之間的數(shù)量關(guān)系(不需要說明理由).2.問題情境:(1)如圖1,,,.求度數(shù).小穎同學(xué)的解題思路是:如圖2,過點(diǎn)作,請你接著完成解答.問題遷移:(2)如圖3,,點(diǎn)在射線上運(yùn)動(dòng),當(dāng)點(diǎn)在、兩點(diǎn)之間運(yùn)動(dòng)時(shí),,.試判斷、、之間有何數(shù)量關(guān)系?(提示:過點(diǎn)作),請說明理由;(3)在(2)的條件下,如果點(diǎn)在、兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、、三點(diǎn)不重合),請你猜想、、之間的數(shù)量關(guān)系并證明.3.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.4.已知,如圖:射線分別與直線、相交于、兩點(diǎn),的角平分線與直線相交于點(diǎn),射線交于點(diǎn),設(shè),且.(1)________,________;直線與的位置關(guān)系是______;(2)如圖,若點(diǎn)是射線上任意一點(diǎn),且,試找出與之間存在一個(gè)什么確定的數(shù)量關(guān)系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點(diǎn)逆時(shí)針方向旋轉(zhuǎn)(如圖)分別與、相交于點(diǎn)和點(diǎn)時(shí),作的角平分線與射線相交于點(diǎn),問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.5.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出么的度數(shù).6.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.定義:對任意一個(gè)兩位數(shù),如果滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“奇異數(shù)”.將一個(gè)“奇異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調(diào)個(gè)位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計(jì)算:..(2)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且請求出這個(gè)“奇異數(shù)”(3)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且滿足,請直接寫出滿足條件的的值.8.閱讀下面文字:對于可以如下計(jì)算:原式上面這種方法叫拆項(xiàng)法,你看懂了嗎?仿照上面的方法,計(jì)算:(1)(2)9.下列等式:,,,將以上三個(gè)等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應(yīng)用:利用(1)的結(jié)論,解決以下問題“①把拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之差,即;②把拆成兩個(gè)分子為1的正的真分?jǐn)?shù)之和,即;(3)定義“”是一種新的運(yùn)算,若,,,求的值.10.閱讀下列材料:小明為了計(jì)算的值,采用以下方法:設(shè)①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計(jì)算過程).11.定義:對任意一個(gè)兩位數(shù),如果滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“奇異數(shù)”.將一個(gè)“奇異數(shù)”的個(gè)位數(shù)字與十位數(shù)字對調(diào)后得到一個(gè)新的兩位數(shù),把這個(gè)新兩位數(shù)與原兩位數(shù)的和與的商記為例如:,對調(diào)個(gè)位數(shù)字與十位數(shù)字后得到新兩位數(shù)是,新兩位數(shù)與原兩位數(shù)的和為,和與的商為,所以根據(jù)以上定義,完成下列問題:(1)填空:①下列兩位數(shù):,,中,“奇異數(shù)”有.②計(jì)算:..(2)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且請求出這個(gè)“奇異數(shù)”(3)如果一個(gè)“奇異數(shù)”的十位數(shù)字是,個(gè)位數(shù)字是,且滿足,請直接寫出滿足條件的的值.12.先閱讀然后解答提出的問題:設(shè)a、b是有理數(shù),且滿足,求ba的值.解:由題意得,因?yàn)閍、b都是有理數(shù),所以a﹣3,b+2也是有理數(shù),由于是無理數(shù),所以a-3=0,b+2=0,所以a=3,b=﹣2,所以.問題:設(shè)x、y都是有理數(shù),且滿足,求x+y的值.13.如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限內(nèi)一點(diǎn),CB⊥y軸交y軸負(fù)半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點(diǎn)C的坐標(biāo).(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點(diǎn)P,求∠APD的度數(shù);(點(diǎn)E在x軸的正半軸).(3)如圖3,當(dāng)點(diǎn)D在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則點(diǎn)D在運(yùn)動(dòng)過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.14.如圖,已知//,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),分別平分和,分別交射線于點(diǎn).(1)當(dāng)時(shí),的度數(shù)是_______;(2)當(dāng),求的度數(shù)(用的代數(shù)式表示);(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與的度數(shù)之比是否隨點(diǎn)的運(yùn)動(dòng)而發(fā)生變化?若不變化,請求出這個(gè)比值;若變化,請寫出變化規(guī)律.(4)當(dāng)點(diǎn)運(yùn)動(dòng)到使時(shí),請直接寫出的度數(shù).15.在平面直角坐標(biāo)系中,已知長方形,點(diǎn),.(1)如圖,有一動(dòng)點(diǎn)在第二象限的角平分線上,若,求的度數(shù);(2)若把長方形向上平移,得到長方形.①在運(yùn)動(dòng)過程中,求的面積與的面積之間的數(shù)量關(guān)系;②若,求的面積與的面積之比.16.我們定義,關(guān)于同一個(gè)未知數(shù)的不等式和,若的解都是的解,則稱與存在“雅含”關(guān)系,且不等式稱為不等式的“子式”.如,,滿足的解都是的解,所以與存在“雅含”關(guān)系,是的“子式”.(1)若關(guān)于的不等式,,請問與是否存在“雅含”關(guān)系,若存在,請說明誰是誰的“子式”;(2)已知關(guān)于的不等式,,若與存在“雅含”關(guān)系,且是的“子式”,求的取值范圍;(3)已知,,,,且為整數(shù),關(guān)于的不等式,,請分析是否存在,使得與存在“雅含”關(guān)系,且是的“子式”,若存在,請求出的值,若不存在,請說明理由.17.在平面直角坐標(biāo)系中描出下列兩組點(diǎn),分別將每組里的點(diǎn)用線段依次連接起來.第一組:、;第二組:、.(1)線段與線段的位置關(guān)系是;(2)在(1)的條件下,線段、分別與軸交于點(diǎn),.若點(diǎn)為射線上一動(dòng)點(diǎn)(不與點(diǎn),重合).①當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),連接、,補(bǔ)全圖形,用等式表示、、之間的數(shù)量關(guān)系,并證明.②當(dāng)與面積相等時(shí),求點(diǎn)的坐標(biāo).18.在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn).已知兩點(diǎn),且、滿足;若四邊形為平行四邊形,且,點(diǎn)在軸上.(1)如圖①,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度沿軸向下運(yùn)動(dòng),當(dāng)時(shí)間為何值時(shí),三角形的面積等于平行四邊形面積的四分之一;(2)如圖②,當(dāng)從點(diǎn)出發(fā),沿軸向上運(yùn)動(dòng),連接、,、、存在什么樣的數(shù)量關(guān)系,請說明理由(排除在和兩點(diǎn)的特殊情況).19.學(xué)校將20××年入學(xué)的學(xué)生按入學(xué)年份、年級、班級、班內(nèi)序號的順序給每一位學(xué)生編號,如2015年入學(xué)的8年級3班的46號學(xué)生的編號為15080346.張山同學(xué)模仿二維碼的方式給學(xué)生編號設(shè)計(jì)了一套身份識別系統(tǒng),在5×5的正方形風(fēng)格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.我們把從上往下數(shù)第i行、從左往右數(shù)第j列表示的數(shù)記為aij,(其中,i、j=1,2,3,4,5),規(guī)定Ai=16ai1+8ai2+4ai3+2ai4+ai5.(1)若A1表示入學(xué)年份,A2表示所在年級,A3表示所在班級,A4表示編號的十位數(shù)字,A5表示編號的個(gè)位數(shù)字.①圖1是張山同學(xué)的身份識別圖案,請直接寫出張山同學(xué)的編號;②請?jiān)趫D2中畫出2018年入學(xué)的9年級5班的39號同學(xué)的身份識別圖案;(2)張山同學(xué)又設(shè)計(jì)了一套信息加密系統(tǒng),其中A1表示入學(xué)年份加8,A2表示所在年級的數(shù)減6再加上所在班級的數(shù),A3表示所在年級的數(shù)乘2后減3再減所在班級的數(shù),將編號(班內(nèi)序號)的末兩位單列出來,作為一個(gè)兩位數(shù),個(gè)位與十位數(shù)字對換后再加2,所得結(jié)果的十位數(shù)字用A4表示、個(gè)位數(shù)字用A5表示.例如:2018年9年級5班的39號同學(xué),其加密后的身份識別圖案中,A1=18+8=26,A2=9-6+5=8,A3=9×2-3-5=10,93+2=95,所以A4=9,A5=5,所以其加密后的身份識別(26081095)圖案如圖3所示.圖4是李思同學(xué)加密后的身份識別圖案,請求出李思同學(xué)的編號.20.先閱讀下面材料,再完成任務(wù):有些關(guān)于方程組的問題,欲求的結(jié)果不是每一個(gè)未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實(shí)數(shù),滿足,……①,,……②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運(yùn)算量比較大.其實(shí),仔細(xì)觀察兩個(gè)方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當(dāng)變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得,這樣的解題思想就是通常所說的“整體思想”解決問題:(1)已知二元一次方程組,則______,______;(2)某班級組織活動(dòng)購買小獎(jiǎng)品,買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元,則購買5支鉛筆、5塊橡皮、5本日記本共需多少元?(3)對于實(shí)數(shù),,定義新運(yùn)算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運(yùn)算.已知,,那么______.21.閱讀下列材料,解答下面的問題:我們知道方程有無數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問題:(1)請你寫出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購買方案?22.李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現(xiàn)有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等,B款瓷磚的長大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等.請回答以下問題:(1)分別求出每款瓷磚的單價(jià).(2)若李師傅買兩種瓷磚共花了1000元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?(3)李師傅打算按如下設(shè)計(jì)圖的規(guī)律進(jìn)行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_米(直接寫出答案).23.對于不為0的一位數(shù)和一個(gè)兩位數(shù),將數(shù)放置于兩位數(shù)之前,或者將數(shù)放置于兩位數(shù)的十位數(shù)字與個(gè)位數(shù)字之間就可以得到兩個(gè)新的三位數(shù),將較大三位數(shù)減去較小三位數(shù)的差與15的商記為.例如:當(dāng),時(shí),可以得到168,618.較大三位數(shù)減去較小三位數(shù)的差為,而,所以.(1)計(jì)算:.(2)若是一位數(shù),是兩位數(shù),的十位數(shù)字為(,為自然數(shù)),個(gè)位數(shù)字為8,當(dāng)時(shí),求出所有可能的,的值.24.如果3個(gè)數(shù)位相同的自然數(shù)m,n,k滿足:m+n=k,且k各數(shù)位上的數(shù)字全部相同,則稱數(shù)m和數(shù)n是一對“黃金搭檔數(shù)”.例如:因?yàn)?5,63,88都是兩位數(shù),且25+63=88,則25和63是一對“黃金搭檔數(shù)”.再如:因?yàn)?52,514,666都是三位數(shù),且152+514=666,則152和514是一對“黃金搭檔數(shù)”.(1)分別判斷87和12,62和49是否是一對“黃金搭檔數(shù)”,并說明理由;(2)已知兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,若s和t是一對“黃金搭檔數(shù)”,并且s與t的和能被7整除,求出滿足題意的s.25.學(xué)校組織名同學(xué)和名教師參加校外學(xué)習(xí)交流活動(dòng)現(xiàn)打算選租大、小兩種客車,大客車載客量為人/輛,小客車載客量為人/輛(1)學(xué)校準(zhǔn)備租用輛客車,有幾種租車方案?(2)在(1)的條件下,若大客車租金為元/輛,小客車租金為元/輛,哪種租車方案最省錢?(3)學(xué)校臨時(shí)增加名學(xué)生和名教師參加活動(dòng),每輛大客車有2名教師帶隊(duì),每輛小客車至少有名教師帶隊(duì).同學(xué)先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設(shè)計(jì)租車方案26.在平面直角坐標(biāo)系中,點(diǎn),,的坐標(biāo)分別為,,,且,滿足方程為二元一次方程.(1)求,的坐標(biāo).(2)若點(diǎn)為軸正半軸上的一個(gè)動(dòng)點(diǎn).①如圖1,當(dāng)時(shí),與的平分線交于點(diǎn),求的度數(shù);②如圖2,連接,交軸于點(diǎn).若成立.設(shè)動(dòng)點(diǎn)的坐標(biāo)為,求的取值范圍.27.閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應(yīng)的點(diǎn)之間的距離;例1.解方程,因?yàn)樵跀?shù)軸上到原點(diǎn)的距離為的點(diǎn)對應(yīng)的數(shù)為,所以方程的解為.例2.解不等式,在數(shù)軸上找出的解(如圖),因?yàn)樵跀?shù)軸上到對應(yīng)的點(diǎn)的距離等于的點(diǎn)對應(yīng)的數(shù)為或,所以方程的解為或,因此不等式的解集為或.參考閱讀材料,解答下列問題:(1)方程的解為;(2)解不等式:;(3)解不等式:.28.某超市投入31500元購進(jìn)A、B兩種飲料共800箱,飲料的成本與銷售價(jià)如下表:(單位:元/箱)類別成本價(jià)銷售價(jià)A4264B3652(1)該超市購進(jìn)A、B兩種飲料各多少箱?(2)全部售完800箱飲料共盈利多少元?(3)若超市計(jì)劃盈利16200元,且A類飲料售價(jià)不變,則B類飲料銷售價(jià)至少應(yīng)定為每箱多少元?29.某電器超市銷售每臺進(jìn)價(jià)分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)貨成本)(1)求A、B兩種型號的電風(fēng)扇的銷售單價(jià);(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.30.在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD.(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo);若不存在,試說明理由;(3)點(diǎn)P是直線BD上一個(gè)動(dòng)點(diǎn),連接PC、PO,當(dāng)點(diǎn)P在直線BD上運(yùn)動(dòng)時(shí),請直接寫出∠OPC與∠PCD、∠POB的數(shù)量關(guān)系【參考答案】***試卷處理標(biāo)記,請不要?jiǎng)h除一、解答題1.(1)①E(3,﹣2)②見解析;③,理由見解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①過點(diǎn)E作EH⊥y軸于H.證明△DOA≌△AHE(AAS)可得結(jié)論.②證明△BOM≌△EHM(AAS)可得結(jié)論.③是定值,證明△BOM≌△EHM可得結(jié)論.(2)根據(jù)點(diǎn)D在點(diǎn)B左側(cè)和右側(cè)分類討論,分別畫出對應(yīng)的圖形,根據(jù)全等三角形的判定及性質(zhì)即可分別求出結(jié)論.【詳解】解:(1)①過點(diǎn)E作EH⊥y軸于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y軸,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③結(jié)論:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)結(jié)論:OA+OD=2AM或OA﹣OD=2AM.理由:當(dāng)點(diǎn)D在點(diǎn)B左側(cè)時(shí),∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時(shí),過點(diǎn)E作EH⊥y軸于點(diǎn)H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.綜上:OA+OD=2AM或OA﹣OD=2AM.【點(diǎn)睛】此題考查的是全等三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)和平面直角坐標(biāo)系,掌握全等三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)和點(diǎn)的坐標(biāo)與線段長度的關(guān)系是解決此題的關(guān)鍵.2.(1)見解析;(2),理由見解析;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由見解析【分析】(1)過P作PE∥AB,構(gòu)造同旁內(nèi)角,利用平行線性質(zhì),可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質(zhì)得出,即可得出答案;(3)畫出圖形(分兩種情況:①點(diǎn)P在BA的延長線上,②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合)),根據(jù)平行線的性質(zhì)即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當(dāng)在延長線時(shí)(點(diǎn)不與點(diǎn)重合),;理由:如圖4,過作交于,,,,,,,,又,;②當(dāng)在之間時(shí)(點(diǎn)不與點(diǎn),重合),.理由:如圖5,過作交于,,,,,,,,又.【點(diǎn)睛】本題考查了平行線的性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力,解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角以及同旁內(nèi)角.3.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.4.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計(jì)算α和β的值,再根據(jù)內(nèi)錯(cuò)角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯(cuò)角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補(bǔ)和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設(shè)∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯(cuò)角相等證平行,平行線同旁內(nèi)角互補(bǔ)等知識是解題的關(guān)鍵.5.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.6.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.7.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計(jì)算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個(gè)兩位數(shù)a,如果a滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點(diǎn)睛】本題考查了新定義下的實(shí)數(shù)運(yùn)算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.8.(1)(2)【分析】(1)根據(jù)例子將每項(xiàng)的整數(shù)部分相加,分?jǐn)?shù)部分相加即可解答;(2)根據(jù)例子將每項(xiàng)的整數(shù)部分相加,分?jǐn)?shù)部分相加即可解答.【詳解】(1)(2)原式【點(diǎn)睛】此題考察新計(jì)算方法,正確理解題意是解題的關(guān)鍵,根據(jù)例子即可仿照計(jì)算.9.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆項(xiàng)法”解答即可;(2)①先變形為,再利用(1)中的規(guī)律解題;②先變形為,再逆用分?jǐn)?shù)的加法法則即可分解;(3)按照定義“”法則表示出,再利用(1)中的規(guī)律解題即可.【詳解】解:(1)觀察發(fā)現(xiàn):,===;故答案是:;.(2)初步應(yīng)用:①=;②;故答案是:;.(3)由定義可知:====.故的值為.【點(diǎn)睛】考查了有理數(shù)運(yùn)算中的規(guī)律型問題:數(shù)字的變化規(guī)律,有理數(shù)的混合運(yùn)算.本題是一道找規(guī)律的題目,要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.10.(1);(2);(3)【分析】(1)設(shè)式子等于s,將方程兩邊都乘以2后進(jìn)行計(jì)算即可;(2)設(shè)式子等于s,將方程兩邊都乘以3,再將兩個(gè)方程相減化簡后得到答案;(3)設(shè)式子等于s,將方程兩邊都乘以a后進(jìn)行計(jì)算即可.【詳解】(1)設(shè)s=①,∴2s=②,②-①得:s=,故答案為:;(2)設(shè)s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設(shè)s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點(diǎn)睛】此題考查代數(shù)式的規(guī)律計(jì)算,能正確理解已知的代數(shù)式的運(yùn)算規(guī)律是難點(diǎn),依據(jù)規(guī)律對于每個(gè)式子變形計(jì)算是關(guān)鍵.11.(1)①,②,;(2);(3)【分析】(1)①由“奇異數(shù)”的定義可得;②根據(jù)定義計(jì)算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根據(jù)題意可列出等式,可求出x、y的值,即可求的值.【詳解】解:(1)①∵對任意一個(gè)兩位數(shù)a,如果a滿足個(gè)位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個(gè)兩位數(shù)為“奇異數(shù)”.∴“奇異數(shù)”為21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根據(jù)題意有∵∴∴∵x、y為正數(shù),且x≠y∴x=6,y=5∴a=6×10+5=65故答案為:(1)①,②,;(2);(3)【點(diǎn)睛】本題考查了新定義下的實(shí)數(shù)運(yùn)算,能理解“奇異數(shù)”定義是本題的關(guān)鍵.12.7或-1.【分析】根據(jù)題目中給出的方法,對所求式子進(jìn)行變形,求出x、y的值,進(jìn)而可求x+y的值.【詳解】解:∵,∴,∴=0,=0∴x=±4,y=3當(dāng)x=4時(shí),x+y=4+3=7當(dāng)x=-4時(shí),x+y=-4+3=-1∴x+y的值是7或-1.【點(diǎn)睛】本題考查實(shí)數(shù)的運(yùn)算,解題的關(guān)鍵是弄清題中給出的解答方法,然后運(yùn)用類比的思想進(jìn)行解答.13.(1)C(5,﹣4);(2)90°;(3)見解析.【詳解】分析:(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b即可;(2)用同角的余角相等和角平分線的意義即可;(3)利用角平分線的意義和互余兩角的關(guān)系簡單計(jì)算證明即可.詳解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四邊形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一點(diǎn),CB⊥y軸,∴C(5,﹣4);(2)如圖,延長CA,∵AF是∠CAE的角平分線,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分線,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不變,∠ANM=45°理由:如圖,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分線,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y軸,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵M(jìn)N是∠BMD的角平分線,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D點(diǎn)在運(yùn)動(dòng)過程中,∠N的大小不變,求出其值為45°點(diǎn)睛:此題是四邊形綜合題,主要考查了非負(fù)數(shù)的性質(zhì),四邊形面積的計(jì)算方法,角平分線的意義,解本題的關(guān)鍵是用整體的思想解決問題,也是本題的難點(diǎn).14.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補(bǔ)可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí)有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質(zhì)可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí),則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)和角平分線的定義,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.15.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據(jù)點(diǎn)在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據(jù)∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設(shè)長方形向上平移個(gè)單位長,得到長方形,然后列出和的面積,即可得出兩者的數(shù)量關(guān)系;②首先根據(jù)已知條件判定四邊形是平行四邊形,經(jīng)過等量轉(zhuǎn)化,即可得出和的面積,進(jìn)而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點(diǎn)E,延長CB至x軸,交于點(diǎn)F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點(diǎn)在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點(diǎn)E,由已知得,,∵點(diǎn)在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設(shè)長方形向上平移個(gè)單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點(diǎn)睛】此題主要考查等量轉(zhuǎn)換和平行四邊形的判定以及性質(zhì),熟練掌握,即可解題.16.(1)A與B存在“雅含”關(guān)系,B是A的“子式”;(2);(3)存在,.【分析】(1)根據(jù)“雅含”關(guān)系的定義即可判斷;(2)先求出解集,根據(jù)“雅含”關(guān)系的定義得出,解不等式即可;(3)首先解關(guān)于的方程組即可求得的值,然后根據(jù),,且為整數(shù)即可得到一個(gè)關(guān)于的范圍,從而求得的整數(shù)值.【詳解】解:(1)不等式A:x+2>1的解集為,∵∴A與B存在“雅含”關(guān)系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴,解得:,(3)存在;由解得:,∵,,即:,解得:,∵為整數(shù),∴的值為,解不等式得:,解不等式得:,∵與存在“雅含”關(guān)系,且是的“子式”,∴不等式的解集為:,∴,且,解得:,∴.【點(diǎn)睛】本題考查了不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小無解.17.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,證明見解析;②點(diǎn)M的坐標(biāo)為(0,)或(0,).【分析】(1)根據(jù)兩點(diǎn)的縱坐標(biāo)相等,連線平行x軸進(jìn)行判斷即可;(2)①過點(diǎn)M作MN∥AC,運(yùn)用平行線的判定和性質(zhì)即可;②設(shè)M(0,m),分兩種情況:(i)當(dāng)點(diǎn)M在線段OB上時(shí),(ii)當(dāng)點(diǎn)M在線段OB的延長線上時(shí),分別運(yùn)用三角形面積公式進(jìn)行計(jì)算即可.【詳解】解:(1)∵A(?3,3)、C(4,3),∴AC∥x軸,∵D(?2,?1)、E(2,?1),∴DE∥x軸,∴AC∥DE;(2)①如圖,∠CAM+∠MDE=∠AMD.理由如下:過點(diǎn)M作MN∥AC,∵M(jìn)N∥AC(作圖),∴∠CAM=∠AMN(兩直線平行,內(nèi)錯(cuò)角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推論),∴∠MDE=∠NMD(兩直線平行,內(nèi)錯(cuò)角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代換).②由題意,得:AC=7,DE=4,設(shè)M(0,m),(i)當(dāng)點(diǎn)M在線段OB上時(shí),BM=3?m,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(3?m)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)當(dāng)點(diǎn)M在線段OB的延長線上時(shí),BM=m?3,F(xiàn)M=m+1,∴S△ACM=AC?BM=×7×(m?3)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);綜上所述,點(diǎn)M的坐標(biāo)為(0,)或(0,).【點(diǎn)睛】本題考查了三角形面積,平行坐標(biāo)軸的直線上的點(diǎn)的坐標(biāo)的特征,平行線的判定和性質(zhì)等,解題關(guān)鍵是運(yùn)用數(shù)形結(jié)合思想和分類討論思想.18.(1)1或3;(2)∠APD=∠CDP+∠PAB或∠APD=∠PAB-∠CDP,理由見解析【分析】(1)由非負(fù)數(shù)的性質(zhì)求出a,b,得到AB的長,結(jié)合點(diǎn)C坐標(biāo)求出平行四邊形ABCD的面積,再根據(jù)的面積等于平行四邊形面積的,列出方程,解之即可;(2)分點(diǎn)P在線段OC上和點(diǎn)P在OC的延長線上,兩種情況,過P作PQ∥AB,利用平行線的性質(zhì)求解.【詳解】解:(1)∵,∴a=-4,b=3,即A(-4,0),B(3,0),∴AB=3-(-4)=7,又C(0,4),∴OC=4,∴平行四邊形ABCD的面積=4×7=28,由題意可知:PC=2t,則OP=,∵的面積等于平行四邊形面積的,∴,解得:t=1或t=3,(2)如圖,當(dāng)點(diǎn)P在線段OC上時(shí),過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠DPQ+∠APQ=∠CDP+∠PAB;當(dāng)點(diǎn)P在OC的延長線上時(shí),過P作PQ∥AB,則PQ∥CD,∴∠CDP=∠DPQ,∠APQ=∠PAB,∴∠APD=∠APQ-∠DPQ=∠PAB-∠CDP.【點(diǎn)睛】本題考查了坐標(biāo)與圖形,平行線的性質(zhì),解題的關(guān)鍵是掌握坐標(biāo)和圖形的關(guān)系,將坐標(biāo)與線段長進(jìn)行轉(zhuǎn)化,同時(shí)適當(dāng)添加輔助線,構(gòu)造平行線.19.(1)①20070618;②見解析;(2)16080413【分析】(1)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(2)根據(jù)題意,分別求出A1,A2,A3,A4,A5,即可得到答案;(3)由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,A2=4+2=6,A3=8+1=9,由此得到李思在8年級4班,再求出A4,A5,即可得到答案.【詳解】解:(1)①在圖1中,A1=16×1+8×0+4×1+2×0+0=20,A2=16×0+8×0+4×1+2×1+1=7,A3=16×0+8×0+4×1+2×1+0=6,A4=1,A5=16×0+8×1+4×0+2×0+0=8,故答案為:20070618;②如圖所示.2018年入學(xué)的9年級5班的39號,其中:A1=18=16+0+0+1+1,A2=09=8+1A3=05=4+1,A4=3,A5=9=8+1.(2)設(shè)李思同學(xué)在x年級y班.由圖4知,A1=16+8=24,由加密規(guī)則得24-8=16,因此,李思是2016年入學(xué)的.A2=4+2=6,A3=8+1=9.由加密規(guī)則,得:,解得x=8,y=4,所以,李思在8年級4班.A4=2+1=3,A5=2+1=3,33-2=31,根據(jù)加密規(guī)則,原編號的末兩位數(shù)為13.綜上,李思同學(xué)的編號是16080413.【點(diǎn)睛】本題主要考查了實(shí)數(shù)與圖形,解二元一次方程組,截圖的關(guān)鍵在于能夠準(zhǔn)確讀懂題意.20.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)設(shè)購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)“買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元”列出方程組,再根據(jù)方程組的特征求出,進(jìn)一步可求出;(3)根據(jù)新定義,將數(shù)值代入新定義里,列方程組求解即可得出答案.【詳解】(1)解:①+②,得;①-②,得;故答案為:-1,1;(2)設(shè)購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)題意,得:①×②-②得∴(元)答:5本日記本共需30元.(3)①②得∴.【點(diǎn)睛】本題考查了三元一次方程組的應(yīng)用,熟練讀懂題干中的“整體思想”是解題的關(guān)鍵.21.(1)方程的正整數(shù)解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個(gè):x=3或x=4或x=5或x=8;(3)有兩種購買方案:即購買單價(jià)為3元的筆記本5本,單價(jià)為5元的鋼筆4支;或購買單價(jià)為3元的筆記本10本,單價(jià)為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設(shè)購買單價(jià)為3元的筆記本x個(gè),購買單價(jià)5元的鋼筆y個(gè),由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購買方案:方案一:購買單價(jià)為3元的筆記本5個(gè),購買單價(jià)為5元的鋼筆4支.方案二:購買單價(jià)為3元的筆記本10個(gè),購買單價(jià)為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設(shè)購買單價(jià)為3元的筆記本x個(gè),購買單價(jià)5元的鋼筆y個(gè),根據(jù)題意列二元一次方程,去正整數(shù)解求值22.(1)A款瓷磚單價(jià)為80元,B款單價(jià)為60元.(2)買了11塊A款瓷磚,2塊B款;或8塊A款瓷磚,6塊B款.(3)B款瓷磚的長和寬分別為1,或1,.【分析】(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,根據(jù)“一塊A款瓷磚和一塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等”列出二元一次方程組,求解即可;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,根據(jù)共花1000元列出二元一次方程,求出符合題意的整數(shù)解即可;(3)設(shè)A款正方形瓷磚邊長為a米,B款長為a米,寬b米,根據(jù)圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14塊”可列出方程求出a的值,然后由是正整教分情況求出b的值.【詳解】解:(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,則有,解得,答:A款瓷磚單價(jià)為80元,B款單價(jià)為60元;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,則80m+60n=1000,即4m+3n=50∵m,n為正整數(shù),且m>n∴m=11時(shí)n=2;m=8時(shí),n=6,答:買了11塊A款瓷磚,2塊B款瓷磚或8塊A款瓷磚,6塊B款瓷磚;(3)設(shè)A款正方形瓷磚邊長為a米,B款長為a米,寬b米.由題意得:,解得a=1.由題可知,是正整教.設(shè)(k為正整數(shù)),變形得到,當(dāng)k=1時(shí),,故合去),當(dāng)k=2時(shí),,故舍去),當(dāng)k=3時(shí),,當(dāng)k=4時(shí),,答:B款瓷磚的長和寬分別為1,或1,.【點(diǎn)睛】本題主要考查了二元一次方程組的實(shí)際應(yīng)用,(1)(2)較為簡單,(3)中利用數(shù)形結(jié)合的思想,找出其中兩款瓷磚的數(shù)量與圖形之間的規(guī)律是解題的關(guān)鍵.23.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計(jì)算.【詳解】(1)當(dāng),時(shí),可以得到217,127.較大三位數(shù)減去較小三位數(shù)的差為,而,∴.(2)當(dāng),時(shí),可以得a50,5a0.三位數(shù)分別為100a+50,500+10a,當(dāng)1≤a<5時(shí),(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當(dāng)a=5時(shí),(500+10a)-(100a+50)=0,而,∴=0,∴=0;當(dāng)5<a≤9時(shí),(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當(dāng),時(shí),可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當(dāng)1≤a<5時(shí),5-a+27-3x=8,∴a+3x=24,∴當(dāng)a=1時(shí),x=(舍去),當(dāng)a=2時(shí),x=(舍去),當(dāng)a=3時(shí),x=7,當(dāng)a=4時(shí),x=(舍去),∴a=3,b=78;當(dāng)a=5時(shí),則27-3x=8,∴x=(舍去),當(dāng)5<a≤9時(shí),則a-5+27-3x=8,∴3x-a=14,∴當(dāng)a=6時(shí),x=(舍去),當(dāng)a=7時(shí),x=7,當(dāng)a=8時(shí),x=(舍去),當(dāng)a=9時(shí),x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點(diǎn)睛】本題考查了新定義問題和二元一次方程的整數(shù)解,準(zhǔn)確理解新定義的意義,靈活運(yùn)用分類思想和枚舉法是解題的關(guān)鍵.24.(1)87和12是“黃金搭檔數(shù)”,62和49不是“黃金搭檔數(shù)”,理由見解析;(2)39或38【分析】(1)根據(jù)“黃金搭檔數(shù)”的定義分別判斷即可;(2)由已知設(shè)x,y為整數(shù),x,z為整數(shù),表示出,由s和t是一對“黃金搭檔數(shù)”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對“黃金搭檔數(shù)”;∵∴111與62,49數(shù)位不相同,∴62和49不是一對“黃金搭檔數(shù)”;故87和12是一對“黃金搭檔數(shù)”,62和49不是一對“黃金搭檔數(shù)”;(2)∵兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,∴設(shè)x,y為整數(shù),x,z為整數(shù),∴∵s和t是一對“黃金搭檔數(shù)”,∴是一個(gè)兩位數(shù),且各個(gè)數(shù)位上的數(shù)相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數(shù),∴不合題意,舍去;②,∵都是整數(shù),且∴解得或,故s為39或38.【點(diǎn)睛】本題考查三元一次方程組的整數(shù)解,解題關(guān)鍵是理解題目中的定義,根據(jù)已知條件列出方程組.25.(1)有3種租車方案;(2)租5輛大客車,2輛小客車最省錢;(3)租用大客車2輛,小客車7輛;或租10輛小客車.【分析】(1)設(shè)租大客車x輛,根據(jù)題意可列出關(guān)于x的不等式,求得不等式的解集后,再根據(jù)x為整數(shù)即可確定租車方案;(2)依次計(jì)算(1)題中的租車方案,比較結(jié)果即可得出答案;(3)設(shè)租大客車x輛,小客車y輛,根據(jù)客車的座位數(shù)滿足的條件可確定x、y滿足的不等式組,進(jìn)一步可確定x、y滿足的方程,再由帶隊(duì)的老師數(shù)可確定x、y滿足的不等式,二者結(jié)合即可確定租車方案.【詳解】解:(1)由題意知:本次乘車共270+7=277(人).設(shè)租大客車x輛,則小客車(7-x)輛,根據(jù)題意,得,解得:,因?yàn)閤為整數(shù),且x≤7,所以x=5,6,7,即有3種租車方案.(2)方案一:當(dāng)x=7,所租7輛皆為大客車時(shí),租車費(fèi)用為:7×400=2800(元),方案二:當(dāng)x=6,所租6輛為大客車,1輛為小客車時(shí),租車費(fèi)用為:6×400+300=2700(元),方案三:當(dāng)x=5,所租5輛為大客車,2輛為小客車時(shí),租車費(fèi)用為:5×400+300×2=2600(元),所以,租5輛大客車,2輛小客車最省錢.(3)乘車總?cè)藬?shù)為270+7+10+4=291(人),因?yàn)樽詈笠惠v小客車最少20人,則客車空位不能大于10個(gè),所以客車的總座位數(shù)應(yīng)滿足:291≤座位數(shù)≤301.設(shè)租大客車x輛,小客車y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車有2名教師帶隊(duì),每輛小客車至少有名教師帶隊(duì),∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車方案為:租大客車2輛,小客車7輛;或租10輛小客車.【點(diǎn)睛】本題考查了不等式和不等式組的實(shí)際應(yīng)用、二元一次方程的整數(shù)解等知識,正確理解題意,列出不等式和不等式組是解題的關(guān)鍵.26.(1)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;(2)①45°;②【分析】(1)根據(jù)可得,,,,即可求得a、c的值,坐標(biāo)可求;2)①作PH∥AD,根據(jù)角平分線的定義、平行線的性質(zhì)計(jì)算,得到答案;②連接AB,交y軸于F,根據(jù)點(diǎn)的坐標(biāo)特征分別求出S△ABC、S△ABD,根據(jù)題意列出不等式,解不等式即可.【詳解】解:(1)由題意得,,,,解得,,,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;(2)①如圖1,作,∵,∴,∵,∴,∵,∴,∴,∵與的平分線交于點(diǎn),∴,,∴,∵,,∴,,∴;②連接,交軸于,∵,∴,即,∵,,,∴,過作軸的平行線,作、垂直,交于點(diǎn)、,,,由題意得,,解得,,∵點(diǎn)為軸正半軸上的一個(gè)動(dòng)點(diǎn),∴.【點(diǎn)睛】本題考查的是二元一次方程的定義、平行線的性質(zhì)、坐標(biāo)與圖形性質(zhì)、三角形的面積計(jì)算,一元一次不等式,掌握平行線的性質(zhì)、三角形面積公式是解題的關(guān)鍵.27.(1)x=2或x=-8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論