安徽省毫州市第二中學2025-2026學年數(shù)學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
安徽省毫州市第二中學2025-2026學年數(shù)學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
安徽省毫州市第二中學2025-2026學年數(shù)學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
安徽省毫州市第二中學2025-2026學年數(shù)學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
安徽省毫州市第二中學2025-2026學年數(shù)學高二上期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省毫州市第二中學2025-2026學年數(shù)學高二上期末質量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與直線垂直,則()A. B.C. D.2.意大利數(shù)學家斐波那契的《算經(jīng)》中記載了一個有趣的數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,……,這就是著名的斐波那契數(shù)列,該數(shù)列的前2022項中有()個奇數(shù)A.1012 B.1346C.1348 D.13503.已知函數(shù),則()A.1 B.2C.3 D.54.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.5.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學生的幾個重要的研學旅行地.某中學在校學生人,學校團委為了了解本校學生到上述紅色基地研學旅行的情況,隨機調查了名學生,其中到過中共一大會址或井岡山研學旅行的共有人,到過井岡山研學旅行的人,到過中共一大會址并且到過井岡山研學旅行的恰有人,根據(jù)這項調查,估計該學校到過中共一大會址研學旅行的學生大約有()人A. B.C. D.6.已知點,,則經(jīng)過點且經(jīng)過線段AB的中點的直線方程為()A. B.C. D.7.設是雙曲線的兩個焦點,為坐標原點,點在上且,則的面積為()A. B.3C. D.28.函數(shù)的單調遞減區(qū)間為()A. B.C. D.9.橢圓的左右兩焦點分別為,,過垂直于x軸的直線交C于A,B兩點,,則橢圓C的離心率是()A. B.C. D.10.甲、乙同時參加某次數(shù)學檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為()A. B.C. D.11.已知,則下列說法錯誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是12.設直線,.若,則的值為()A.或 B.或C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在上的偶函數(shù)的導函數(shù)為,當時,有,且,則使得成立的的取值范圍是___________.14.甲乙兩艘輪船都要在某個泊位???個小時,假定它們在一晝夜的時間段內隨機地到達,則兩船中有一艘在??坎次粫r、另一艘船必須等待的概率為______.15.若圓心坐標為圓被直線截得的弦長為,則圓的半徑為______.16.已知函數(shù),若,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,離心率為,短半軸長為1(1)求橢圓C的方程;(2)已知直線,問:在橢圓C上是否存在點T,使得點T到直線l的距離最大?若存在,請求出這個最大距離;若不存在,請說明理由18.(12分)已知圓C過兩點,,且圓心C在直線上(1)求圓C的方程;(2)過點作圓C的切線,求切線方程19.(12分)已知拋物線C的頂點在坐標原點,焦點在x軸上,點在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點F的直線l交拋物線于P,Q兩點,若求直線l的方程20.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程21.(12分)已知函數(shù),且在處取得極值.(1)求的值;(2)當,求的最小值.22.(10分)已知各項均為正數(shù)的等比數(shù)列{}的前4項和為15,且.(1)求{}的通項公式;(2)若,記數(shù)列{}前n項和為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)兩直線垂直可直接構造方程求得結果.【詳解】由兩直線垂直得:,解得:.故選:C.2、C【解析】由斐波那契數(shù)列的前幾項分析該數(shù)列的項的奇偶規(guī)律,由此確定該數(shù)列的前2022項中的奇數(shù)的個數(shù).【詳解】由已知可得為奇數(shù),為奇數(shù),為偶數(shù),因為,所以為奇數(shù),為奇數(shù),為偶數(shù),…………所以為奇數(shù),為奇數(shù),為偶數(shù),又故該數(shù)列的前2022項中共有1348個奇數(shù),故選:C.3、C【解析】利用導數(shù)的定義,以及運算法則,即可求解.【詳解】,,所以,所以故選:C4、C【解析】共漸近線的雙曲線方程,設,把點代入方程解得參數(shù)即可.【詳解】設,把點代入方程解得參數(shù),所以化簡得方程故選:C.5、B【解析】作出韋恩圖,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,根據(jù)題意求出的值,由此可得出該學校到過中共一大會址研學旅行的學生人數(shù).【詳解】如下圖所示,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,由題意可得,解的,因此,該學校到過中共一大會址研學旅行的學生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎題.6、C【解析】求AB的中點坐標,根據(jù)直線所過的兩點坐標求直線方程即可.【詳解】由已知,AB中點為,又,∴所求直線斜率為,故直線方程為,即故選:C.7、B【解析】由是以P為直角直角三角形得到,再利用雙曲線的定義得到,聯(lián)立即可得到,代入中計算即可.【詳解】由已知,不妨設,則,因為,所以點在以為直徑的圓上,即是以P為直角頂點的直角三角形,故,即,又,所以,解得,所以故選:B【點晴】本題考查雙曲線中焦點三角形面積的計算問題,涉及到雙曲線的定義,考查學生的數(shù)學運算能力,是一道中檔題.8、A【解析】先求定義域,再由導數(shù)小于零即可求得函數(shù)的單調遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域為,又,因為,所以由得,解得,所以函數(shù)的單調遞減區(qū)間為.故選:A.9、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點,,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.10、D【解析】利用相互獨立事件概率乘法公式直接求解.【詳解】甲、乙同時參加某次數(shù)學檢測,成績?yōu)閮?yōu)秀的概率分別為、,兩人的檢測成績互不影響,則兩人的檢測成績都為優(yōu)秀的概率為.故選:D11、D【解析】利用空間角的意義結合空間向量求空間角的方法逐一分析各選項即可判斷作答.【詳解】對于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯誤;對于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D12、A【解析】由兩直線垂直可得出關于實數(shù)的等式,即可解得實數(shù)的值.【詳解】因為,則,解得或.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)當時,有,令,得到在上遞增,再根據(jù)在上的偶函數(shù),得到在上是奇函數(shù),則在上遞增,然后由,得到求解【詳解】∵當時,有,令,∴,∴在上遞增,又∵在上的偶函數(shù)∴,∴在上是奇函數(shù)∴在上遞增,又∵,∴當時,,此時,0<x<1,當時,,此時,,∴成立的的取值范圍是故答案為:﹒14、【解析】利用幾何概型的面積型概率計算,作出邊長為24的正方形面積,求出部分的面積,即可求得答案.【詳解】設甲乙兩艘輪船到達的時間分為,則,記事件為兩船中有一艘在??坎次粫r、另一艘船必須等待,則,即∴.故答案為:.【點睛】本題考查幾何概型,考查轉化與化歸思想、數(shù)形結合思想,考查邏輯推理能力和運算求解能力,求解時注意對概率模型的抽象成面積型.15、【解析】利用垂徑定理計算即可.【詳解】設圓的半徑為,則,得.故答案為:.16、【解析】求出導函數(shù),確定導函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點睛】本題考查導數(shù)的運算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關鍵三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,最大距離為.,理由見解析【解析】(1)根據(jù)離心率及短軸長求橢圓參數(shù),即可得橢圓方程.(2)根據(jù)直線與橢圓的位置關系,將問題轉為平行于直線且與橢圓相切的切線與直線最大距離,設直線方程聯(lián)立橢圓方程根據(jù)求參數(shù),進而判斷點T的存在性,即可求最大距離.【小問1詳解】由題設知:且,又,∴,故橢圓C的方程為.小問2詳解】聯(lián)立直線與橢圓,可得:,∴,即直線與橢圓相離,∴只需求平行于直線且與橢圓相切的切線與直線最大距離即為所求,令平行于直線且與橢圓相切的直線為,聯(lián)立橢圓,整理可得:,∴,可得,當,切線為,其與直線距離為;當,切線為,其與直線距離為;綜上,時,與橢圓切點與直線距離最大為.18、(1).(或標準形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標,求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據(jù)題意,因為圓過兩點,,設的中點為,則,因為,所以的中垂線方程為,即又因為圓心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當過點P的切線的斜率不存在時,此時直線與圓C相切當過點P的切線斜率k存在時,設切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或19、(1)(2)或【解析】(1)把點的坐標代入方程即可;(2)設直線方程,解聯(lián)立方程組,消未知數(shù),得到一元二次方程,再利用韋達定理和已知條件求斜率.【小問1詳解】因為拋物線C的頂點在原點,焦點在x軸上,所以設拋物線方程為又因為點在拋物線C上,所以,解得,所以拋物線的方程為;【小問2詳解】拋物線C的焦點為,當直線l的斜率不存在時,,不符合題意;當直線l的斜率存在時,設直線l的方程為,設直線l交拋物線的兩點坐標為,,由得,,,,由拋物線得定義可知,所以,解得,即,所以直線l的方程為或20、(1);(2)【解析】(1)首先表示出直線l的方程,再聯(lián)立直線與拋物線方程,消去,列出韋達定理,再根據(jù)焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯(lián)立去,消去整理得設,,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質,屬于中檔題.21、(1);(2).【解析】(1)對函數(shù)求導,則極值點為導函數(shù)的零點,進而建立方程組解出a,b,然后討論函數(shù)的單調區(qū)間進行驗證,最后確定答案;(2)根據(jù)(1)得到函數(shù)在上的單調區(qū)間,進而求出最小值.【小問1詳解】,因為在處取得極值,所以,則,所以時,,單調遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論