版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆天津市西青區(qū)高一數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.實驗測得四組(x,y)的值為(1,2),(2,3),(3,4),(4,5),則y與x之間的回歸直線方程為()A.B.C.D.2.函數(shù)的部分圖象如圖,則()A. B.C. D.3.要得到函數(shù)的圖像,需要將函數(shù)的圖像()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位4.已知集合,則()A. B.或C. D.或5.若是第二象限角,是其終邊上的一點,且,則()A. B.C. D.或6.下列哪一項是“”的必要條件A. B.C. D.7.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或8.已知三棱錐D-ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,則該三棱錐的外接球的表面積為()A.π B.6πC.5π D.8π9.已知集合,,則()A. B.C. D.10.三個數(shù)20.3,0.32,log0.32的大小順序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.3二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若存在定義域為的函數(shù)滿足:對任意,,則___________.12.已知,,則函數(shù)的值域為______13.已知甲、乙、丙三人去參加某公司面試,他們被該公司錄取的概率分別是,且三人錄取結果相互之間沒有影響,則他們?nèi)酥星∮袃扇吮讳浫〉母怕蕿開__________.14.函數(shù)的反函數(shù)為___________15.已知向量,若,則實數(shù)的值為______16.等于_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.一個工廠生產(chǎn)某種產(chǎn)品每年需要固定投資100萬元,此外每生產(chǎn)1件該產(chǎn)品還需要增加投資1萬元,年產(chǎn)量為()件.當時,年銷售總收入為()萬元;當時,年銷售總收入為萬元.記該工廠生產(chǎn)并銷售這種產(chǎn)品所得的年利潤為萬元.(年利潤=年銷售總收入一年總投資)(1)求(萬元)與(件)的函數(shù)關系式;(2)當該工廠的年產(chǎn)量為多少件時,所得年利潤最大?最大年利潤是多少?18.我們知道,函數(shù)的圖象關于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).若函數(shù)的圖象關于點對稱,且當時,.(1)求的值;(2)設函數(shù).(i)證明函數(shù)的圖象關于點對稱;(ii)若對任意,總存在,使得成立,求的取值范圍.19.已知函數(shù),.(1)求的值.(2)設,,,求的值.20.已知是定義在上的奇函數(shù),,當時的解析式為.(1)寫出在上的解析式;(2)求在上的最值.21.如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD(1)求證:BC⊥AF;(2)求幾何體EF-ABCD的體積
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)所給數(shù)據(jù),求出樣本中心點,把樣本中心點代入所給四個選項中驗證,即可得答案【詳解】解:由已知可得,所以這組數(shù)據(jù)的樣本中心點為,因樣本中心必在回歸直線上,所以把樣本中心點代入四個選項中驗證,可得只有成立,故選:A.2、C【解析】先利用圖象中的1和3,求得函數(shù)的周期,求得,最后根據(jù)時取最大值1,求得,即可得解【詳解】解:根據(jù)函數(shù)的圖象可得:函數(shù)的周期為,∴,當時取最大值1,即,又,所以,故選:C【點睛】本題主要考查了由的部分圖象確定其解析式,考查了五點作圖的應用和圖象觀察能力,屬于基本知識的考查.屬于基礎題.3、A【解析】直接按照三角函數(shù)圖像的平移即可求解.【詳解】,所以是左移個單位.故選:A4、C【解析】直接利用補集和交集的定義求解即可.【詳解】由集合,可得:或,故選:C.【點睛】關鍵點點睛:本該考查了集合的運算,解決該題的關鍵是掌握補集和交集的定義..5、C【解析】根據(jù)余弦函數(shù)的定義有,結合是第二象限角求解即可.【詳解】由題設,,整理得,又是第二象限角,所以.故選:C6、D【解析】根據(jù)必要條件的定義可知:“”能推出的范圍是“”的必要條件,再根據(jù)“小推大”的原則去判斷.【詳解】由題意,“選項”是“”的必要條件,表示“”推出“選項”,所以正確選項為D.【點睛】推出關系能滿足的時候,一定是小范圍推出大范圍,也就是“小推大”.7、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當直線過原點時,滿足題意,方程為,即2x-y=0;當直線不過原點時,設方程為,∵直線過(1,2),∴,∴,∴方程,故選:D﹒8、B【解析】由題意結合平面幾何、線面垂直的判定與性質(zhì)可得BC⊥BD,AD⊥AC,再由平面幾何的知識即可得該幾何體外接球的球心及半徑,即可得解.【詳解】AB=BC=1,AD=2,BD=,AC=,∴,,∴DA⊥AB,AB⊥BC,由BC⊥AD可得BC⊥平面DAB,DA⊥平面ABC,∴BC⊥BD,AD⊥AC,∴CD=,由直角三角形的性質(zhì)可知,線段CD的中點O到點A,B,C,D的距離均為,∴該三棱錐外接球的半徑為,故三棱錐的外接球的表面積為4π=6π.故選:B.【點睛】本題考查了三棱錐幾何特征的應用及其外接球表面積的求解,考查了運算求解能力與空間思維能力,屬于中檔題.9、B【解析】直接利用交集運算法則得到答案.【詳解】,,則故選:【點睛】本題考查了交集的運算,屬于簡單題.10、D【解析】由已知得:,,,所以.故選D.考點:指數(shù)函數(shù)和對數(shù)函數(shù)的圖像和性質(zhì).二、填空題:本大題共6小題,每小題5分,共30分。11、-2【解析】由已知可得為偶函數(shù),即,令,由,可得,計算即可得解.【詳解】對任意,,將函數(shù)向左平移2個單位得到,函數(shù)為偶函數(shù),所以,令,由,可得,解得:.故答案為:.12、【解析】,又,∴,∴故答案為13、##0.15【解析】利用相互獨立事件概率乘法公式分別求出甲和乙被錄取的概率、甲和丙被錄取的概率、乙和丙被錄取的概率,然后即可求出他們?nèi)酥星∮袃扇吮讳浫〉母怕?【詳解】因為甲、乙、丙三人被該公司錄取的概率分別是,且三人錄取結果相互之間沒有影響,甲和乙被錄取的概率為,甲和丙被錄取的概率為,乙和丙被錄取的概率為則他們?nèi)酥星∮袃扇吮讳浫〉母怕蕿?,故答案為?14、【解析】先求出函數(shù)的值域有,再得出,從而求得反函數(shù).【詳解】由,可得由,則,所以故答案為:.15、;【解析】由題意得16、【解析】直接利用誘導公式即可求解.【詳解】由誘導公式得:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)();(2)當年產(chǎn)量為件時,所得年利潤最大,最大年利潤為萬元.【解析】(1)根據(jù)已知條件,分當時和當時兩種情況,分別求出年利潤的表達式,綜合可得答案;(2)根據(jù)(1)中函數(shù)解析式,求出最大值點和最大值即可【詳解】(1)由題意得:當時,,當時,,故();(2)當時,,當時,,而當時,,故當年產(chǎn)量為件時,所得年利潤最大,最大年利潤為萬元.【點睛】本題主要考查函數(shù)模型及最值的求法,正確建立函數(shù)關系是解題的關鍵,屬于??碱}.18、(1);(2)(i)證明見解析;(ii).【解析】(1)根據(jù)題意∵為奇函數(shù),∴,令x=1即可求出;(2)(i)驗證為奇函數(shù)即可;(ii))求出在區(qū)間上的值域為A,記在區(qū)間上的值域為,則.由此問題轉(zhuǎn)化為討論f(x)的值域B,分,,三種情況討論即可.【小問1詳解】∵為奇函數(shù),∴,得,則令,得.【小問2詳解】(i),∵為奇函數(shù),∴為奇函數(shù),∴函數(shù)的圖象關于點對稱.(ii)在區(qū)間上單調(diào)遞增,∴在區(qū)間上的值域為,記在區(qū)間上的值域為,由對,總,使得成立知,①當時,上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,∴在上單調(diào)遞增,只需即可,得,∴滿足題意;②當時,在上單調(diào)遞減,在上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,在上單調(diào)遞減,∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,∴或,當時,,,∴滿足題意;③當時,在上單調(diào)遞減,由對稱性知,在上單調(diào)遞減,∴在上單調(diào)遞減,只需即可,得,∴滿足題意.綜上所述,的取值范圍為.19、(1);(2).【解析】(1)代入可求得其值;(2)由已知求得,,再由同角三角函數(shù)的關系可求得,,運用余弦的和角公式可求得答案.【詳解】解:(1).(2),∴,∵,∴,∵,∴,,∵.20、(1)(2)最大值為0,最小值為【解析】(1)先求得參數(shù),再依據(jù)奇函數(shù)性質(zhì)即可求得在上的解析式;(2)轉(zhuǎn)化為二次函數(shù)在給定區(qū)間求值域即可解決.【小問1詳解】因為是定義在上的奇函數(shù),所以,即,由,得,由,解得,則當時,函數(shù)解析式為設,則,,即當時,【小問2詳解】當時,,所以當,即時,的最大值為0,當,即時,的最小值為.21、(1)詳見解析;(2).【解析】(1)推導出FC⊥CD,F(xiàn)C⊥BC,AC⊥BC,由此BC⊥平面ACF,從而BC⊥AF(2)推導出AC=BC=2,AB4,從而AD=BCsin∠ABC=22,由V幾何體EF﹣ABCD=V幾何體A﹣CDEF+V幾何體F﹣ACB,能求出幾何體EF﹣ABCD的體積【詳解】(1)因為平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,又四邊形CDEF是正方形,所以FC⊥CD,F(xiàn)C?平面CDEF,所以FC⊥平面ABCD,所以FC⊥BC因為△ACB是腰長為2的等腰直角三角形,所以AC⊥BC又AC∩CF=C,所以BC⊥平面ACF所以BC⊥AF(2)因為△ABC是腰長為2的等腰直角三角形,所以AC=BC=2,AB=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院醫(yī)療廢物處理制度
- 企業(yè)員工晉升與發(fā)展制度
- 會議議程調(diào)整與臨時決策制度
- 2026年財務成本控制與優(yōu)化考試題集
- 2026年體育教育理論初級體育教師專業(yè)知識模擬題
- 2026年醫(yī)療行業(yè)面試知識問答與技巧
- 2026年材料科學高級職稱評審專業(yè)知識題集與解析
- 2026年信息論協(xié)議
- 2026年新版聲紋驗證協(xié)議
- 唐代書法知識
- 《期末英語家長會》課件
- 高空作業(yè)起重吊車施工方案
- CQI-12特殊過程 涂裝系統(tǒng)評估封面表
- DL∕T 1475-2015 電力安全工器具配置與存放技術要求
- CJT 252-2011 城鎮(zhèn)排水水質(zhì)水量在線監(jiān)測系統(tǒng)技術要求
- 密押服務器型用戶手冊
- CJJT148-2010 城鎮(zhèn)燃氣加臭技術規(guī)程
- 《審計法》修訂解讀
- 文化墻設計制作合同書兩份
- 2023年內(nèi)蒙專技繼續(xù)教育學習計劃考試答案(整合版)
- 石油天然氣建設工程交工技術文件編制規(guī)范(SYT68822023年)交工技術文件表格儀表自動化安裝工程
評論
0/150
提交評論