山東省菏澤2025-2026學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁(yè)
山東省菏澤2025-2026學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁(yè)
山東省菏澤2025-2026學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁(yè)
山東省菏澤2025-2026學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁(yè)
山東省菏澤2025-2026學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省菏澤2025-2026學(xué)年數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,若,則()A.1 B.C. D.22.對(duì)于兩個(gè)平面、,“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè)等差數(shù)列的公差為d,且,則()A.12 B.4C.6 D.84.已知圓:,點(diǎn)是直線:上的動(dòng)點(diǎn),過(guò)點(diǎn)引圓的兩條切線、,其中、為切點(diǎn),則直線經(jīng)過(guò)定點(diǎn)()A. B.C. D.5.函數(shù)在上的最小值為()A. B.C.-1 D.6.若隨機(jī)事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨(dú)立C.互為對(duì)立 D.互斥且獨(dú)立7.四棱錐中,底面ABCD是平行四邊形,點(diǎn)E為棱PC的中點(diǎn),若,則等于()A.1 B.C. D.28.已如雙曲線(,)的左、右焦點(diǎn)分別為,,過(guò)的直線交雙曲線的右支于A,B兩點(diǎn),若,且,則該雙曲線的離心率為()A. B.C. D.9.動(dòng)點(diǎn)P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.10.設(shè)是兩個(gè)不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則11.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.1212.如圖,直四棱柱的底面是菱形,,,M是的中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則與向量同方向的單位向量的坐標(biāo)為_(kāi)___________.14.圓關(guān)于直線的對(duì)稱圓的標(biāo)準(zhǔn)方程為_(kāi)______15.已知數(shù)列為嚴(yán)格遞增數(shù)列,且對(duì)任意,都有且.若對(duì)任意恒成立,則________16.若“,”是真命題,則實(shí)數(shù)m的取值范圍________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的方程為,點(diǎn),過(guò)點(diǎn)的直線交拋物線于兩點(diǎn)(1)求△OAB面積的最小值(為坐標(biāo)原點(diǎn));(2)是否為定值?若是,求出該定值;若不是,說(shuō)明理由18.(12分)已知橢圓與雙曲線有相同的焦點(diǎn),且的短軸長(zhǎng)為(1)求的方程;(2)若直線與交于P,Q兩點(diǎn),,且的面積為,求k19.(12分)已知拋物線:的焦點(diǎn)為,點(diǎn)在上,點(diǎn)在的內(nèi)側(cè),且的最小值為.(1)求的方程;(2)為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)B,C為E上兩個(gè)不同的點(diǎn),其中B點(diǎn)在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.20.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過(guò)點(diǎn).(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求實(shí)數(shù)的值.21.(12分)已知橢圓左右焦點(diǎn)分別為,,離心率為,P是橢圓上一點(diǎn),且面積的最大值為1.(1)求橢圓的方程;(2)過(guò)的直線交橢圓于M,N兩點(diǎn),求的取值范圍.22.(10分)在△中,已知、、分別是三內(nèi)角、、所對(duì)應(yīng)的邊長(zhǎng),且(Ⅰ)求角的大??;(Ⅱ)若,且△的面積為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由向量平行,先求出的值,再由模長(zhǎng)公式求解模長(zhǎng).【詳解】由,則,即則,所以則故選:B2、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個(gè)點(diǎn)到的距離相等,當(dāng)這三個(gè)點(diǎn)不在一條直線上時(shí),可得;當(dāng)這三個(gè)點(diǎn)在一條直線上時(shí),則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個(gè)點(diǎn)到的距離相等,故必要性成立,所以“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的必要不充分條件.故選:B.3、B【解析】利用等差數(shù)列的通項(xiàng)公式的基本量計(jì)算求出公差.【詳解】,所以.故選:B4、D【解析】根據(jù)圓的切線性質(zhì),結(jié)合圓的標(biāo)準(zhǔn)方程、圓與圓的位置關(guān)系進(jìn)行求解即可.【詳解】因?yàn)?、是圓的兩條切線,所以,因此點(diǎn)、在以為直徑的圓上,因?yàn)辄c(diǎn)是直線:上的動(dòng)點(diǎn),所以設(shè),點(diǎn),因此的中點(diǎn)的橫坐標(biāo)為:,縱坐標(biāo)為:,,因此以為直徑的圓的標(biāo)準(zhǔn)方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過(guò)定點(diǎn),故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)睛:由圓的切線性質(zhì)得到點(diǎn)、在以為直徑的圓上,運(yùn)用圓與圓的位置關(guān)系進(jìn)行求解是解題的關(guān)鍵.5、D【解析】求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)數(shù)的符號(hào)求出函數(shù)的單調(diào)區(qū)間,再根據(jù)函數(shù)的單調(diào)性即可得出答案.【詳解】解:因?yàn)?,所以,?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,故.故選:D.6、B【解析】利用獨(dú)立事件,互斥事件和對(duì)立事件的定義判斷即可【詳解】解:因?yàn)?,,又因?yàn)椋杂?,所以事件與相互獨(dú)立,不互斥也不對(duì)立故選:B.7、B【解析】運(yùn)用向量的線性運(yùn)用表示向量,對(duì)照系數(shù),求得,代入可得選項(xiàng).【詳解】因?yàn)?,所以,所以,所以,解得,所以,故選:B.8、A【解析】先作輔助線,設(shè)出邊長(zhǎng),結(jié)合題干條件得到,,利用勾股定理得到關(guān)于的等量關(guān)系,求出離心率.【詳解】連接,設(shè),則根據(jù)可知,,因?yàn)?,由勾股定理得:,由雙曲線定義可知:,,解得:,,從而,解得:,所以,,由勾股定理得:,從而,即該雙曲線的離心率為.故選:A9、B【解析】設(shè),根據(jù)兩點(diǎn)間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡(jiǎn)為,即圓心為(0,4),半徑為,所以點(diǎn)P到圓心的距離,令,則,令,,為開(kāi)口向上,對(duì)稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B10、C【解析】對(duì)于A、B、D均可能出現(xiàn),而對(duì)于C是正確的11、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當(dāng)時(shí),不滿足,故,即輸出的的值為.故選:.12、D【解析】用向量分別表示,利用向量的夾角公式即可求解.【詳解】由題意可得,故選:D【點(diǎn)睛】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由空間向量的模的計(jì)算求得向量的模,再由單位向量的定義求得答案.【詳解】解:因?yàn)?,所以,所以與向量同方向的單位向量的坐標(biāo)為,故答案為:.14、【解析】先將已知圓的方程化為標(biāo)準(zhǔn)形式,求得圓心坐標(biāo)(2,2)和半徑2,然后可根據(jù)直線的位置直接看出(2,2)點(diǎn)的對(duì)稱點(diǎn),進(jìn)而寫出方程.【詳解】圓的標(biāo)準(zhǔn)方程為,圓心(2,2),半徑為2,圓心(2,2)關(guān)于直線的對(duì)稱點(diǎn)為原點(diǎn),所以所求對(duì)稱圓標(biāo)準(zhǔn)方程為,故答案為:15、66【解析】根據(jù)恒成立和嚴(yán)格遞增可得,然后利用遞推求出,的值,不難發(fā)現(xiàn)在此兩項(xiàng)之間的所有項(xiàng)為連續(xù)正整數(shù),于是可得,,然后可解.【詳解】因?yàn)?,且?shù)列為嚴(yán)格遞增數(shù)列,所以或,若,則(矛盾),故由可得:,,,,,,,,,,,,,因,,,且數(shù)列為嚴(yán)格遞增數(shù)列,,所以,,所以,所以故答案為:6616、【解析】由于“,”是真命題,則實(shí)數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,據(jù)此即可求出結(jié)果.【詳解】由于“,”是真命題,則實(shí)數(shù)m的取值集合就是函數(shù)的函數(shù)值的集合,即.故答案為:【點(diǎn)睛】本題主要考查了存在量詞命題的概念的理解,以及數(shù)學(xué)轉(zhuǎn)換思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)是,該定值.【解析】(1)根據(jù)弦長(zhǎng)公式、點(diǎn)到直線距離公式,結(jié)合三角形面積公式進(jìn)行求解即可;(2)根據(jù)兩點(diǎn)間距離公式,結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問(wèn)1詳解】顯然直線存在斜率,設(shè)直線的方程為:,所以有,設(shè),則有,,原點(diǎn)到直線的距離為:,△OAB的面積為:,當(dāng)時(shí),有最小值,最小值為;【小問(wèn)2詳解】是定值,理由如下:由(1)可知:,,【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.18、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點(diǎn)即知橢圓焦點(diǎn),結(jié)合橢圓短軸長(zhǎng),可求得橢圓標(biāo)準(zhǔn)方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關(guān)系式,然后求出弦長(zhǎng)以及到直線PQ的距離,進(jìn)而表示出,由題意得關(guān)于k的方程,解得答案.【小問(wèn)1詳解】雙曲線即,故雙曲線交點(diǎn)坐標(biāo)為,由此可知橢圓焦點(diǎn)也為,又的短軸長(zhǎng)為,故,所以,故橢圓的方程為;【小問(wèn)2詳解】聯(lián)立,整理得:,其,設(shè),則,所以=,點(diǎn)到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.19、(1)(2)【解析】(1)根據(jù)題意,結(jié)合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設(shè),根據(jù)拋物線的對(duì)稱性,可表示出B,C的坐標(biāo),從而利用向量的坐標(biāo)運(yùn)算,求得所設(shè)參數(shù)值,進(jìn)而求得答案.【小問(wèn)1詳解】的準(zhǔn)線為:,作于R,根據(jù)拋物線的定義有,所以,因?yàn)樵诘膬?nèi)側(cè),所以當(dāng)P,Q,R三點(diǎn)共線時(shí),取得最小值,此時(shí),解得,所以的方程為.小問(wèn)2詳解】因?yàn)锳B,OC互相垂直平分,所以四邊形AOBC是菱形.由,得軸,設(shè)點(diǎn),則,由拋物線的對(duì)稱性知,,,.由,得,解得,所以在菱形中,,邊上的高,所以菱形的面積.20、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設(shè)出所求雙曲線方程為,在根據(jù)點(diǎn)在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關(guān)于的一元二次方程,利用韋達(dá)定理得出的關(guān)系,再根據(jù)中點(diǎn)坐標(biāo)公式求出線段的中點(diǎn)的坐標(biāo),代入圓方程即可求解.【小問(wèn)1詳解】由題意,設(shè)雙曲線的方程為,則又因?yàn)殡p曲線過(guò)點(diǎn),,所以雙曲線的方程為:【小問(wèn)2詳解】由,消去整理,得,設(shè),則因?yàn)橹本€與雙曲線交于不同的兩點(diǎn),所以,解得.,所以則中點(diǎn)坐標(biāo)為,代入圓得,解得.實(shí)數(shù)的值為21、(1)(2)【解析】(1)依題意得到方程組,求出、、,即可求出橢圓方程;(2)首先求出過(guò)且與軸垂直時(shí)、的坐標(biāo),即可得到,當(dāng)過(guò)的直線不與軸垂直時(shí),可設(shè),,直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達(dá)定理,根據(jù)平面向量數(shù)量積的坐標(biāo)表

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論