云南省大理市2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
云南省大理市2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
云南省大理市2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
云南省大理市2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
云南省大理市2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省大理市2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線:的左、右焦點(diǎn)分別為、,過的直線與y軸交于點(diǎn)A、與雙曲線右支交于點(diǎn)B,若為等邊三角形,則雙曲線C的離心率為()A. B.C.2 D.2.試在拋物線上求一點(diǎn),使其到焦點(diǎn)的距離與到的距離之和最小,則該點(diǎn)坐標(biāo)為A. B.C. D.3.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.4.某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率如下:排隊人數(shù)01234概率0.10.16030.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26C.0.56 D.0.745.(一)單項(xiàng)選擇函數(shù)在處的導(dǎo)數(shù)等于()A.0 B.C.1 D.e6.已知雙曲線方程為,過點(diǎn)的直線與雙曲線只有一個公共點(diǎn),則符合題意的直線的條數(shù)共有()A.4條 B.3條C.2條 D.1條7.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.18.若圓與圓外切,則()A. B.C. D.9.已知雙曲線的左、右焦點(diǎn)分別為,,過點(diǎn)作直線交雙曲線的右支于A,B兩點(diǎn).若,則雙曲線的離心率為()A. B.C. D.10.已知橢圓方程為:,則其離心率為()A. B.C. D.11.等比數(shù)列中,,則()A. B.C.2 D.412.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線在兩坐標(biāo)軸上的截距分別為,,則__________.14.已知點(diǎn)為拋物線的焦點(diǎn),,點(diǎn)為拋物線上一動點(diǎn),當(dāng)最小時,點(diǎn)恰好在以為焦點(diǎn)的雙曲線上,則該雙曲線的離心率為___________.15.,若2是與的等比中項(xiàng),則的最小值為___________.16.函數(shù)僅有一個零點(diǎn),則實(shí)數(shù)的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓過點(diǎn)且動圓內(nèi)切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點(diǎn),點(diǎn)滿足求直線的方程.18.(12分)已知各項(xiàng)均為正數(shù)的等差數(shù)列滿足,且,,構(gòu)成等比數(shù)列的前三項(xiàng).(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)如圖,在四棱雉中,平面ABCD,底面ABCD是直角梯形,其中,,,,E為棱BC上的點(diǎn),且(1)求證:平面PAC;(2)求二面角A-PC-D的正弦值20.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值21.(12分)已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的解析式及單調(diào)遞減區(qū)間;(2)若函數(shù)無零點(diǎn),求的取值范圍22.(10分)已知數(shù)列的前項(xiàng)和,且(1)證明:數(shù)列為等差數(shù)列;(2)設(shè),記數(shù)列的前項(xiàng)和為,若,對任意恒成立,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,從而即可求解.【詳解】解:由雙曲線的定義知,,又為等邊三角形,所以,由對稱性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以雙曲線C的離心率,故選:B.2、A【解析】由題意得拋物線的焦點(diǎn)為,準(zhǔn)線方程為過點(diǎn)P作于點(diǎn),由定義可得,所以,由圖形可得,當(dāng)三點(diǎn)共線時,最小,此時故點(diǎn)的縱坐標(biāo)為1,所以橫坐標(biāo).即點(diǎn)P的坐標(biāo)為.選A點(diǎn)睛:與拋物線有關(guān)的最值問題的解題策略該類問題一般解法是利用拋物線的定義,實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化(1)將拋物線上的點(diǎn)到準(zhǔn)線的距離轉(zhuǎn)化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用“與直線上所有點(diǎn)的連線中的垂線段最短”解決3、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B4、D【解析】利用互斥事件概率計算公式直接求解【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應(yīng)概率表,得:至少有兩人排隊的概率為:故選:D【點(diǎn)睛】本題考查概率的求法、互斥事件概率計算公式,考查運(yùn)算求解能力,是基礎(chǔ)題5、B【解析】利用導(dǎo)數(shù)公式求解.【詳解】因?yàn)楹瘮?shù),所以,所以,故選;B6、A【解析】利用雙曲線漸近線的性質(zhì),結(jié)合一元二次方程根的判別式進(jìn)行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點(diǎn)為.①直線與雙曲線只有一個公共點(diǎn);②過點(diǎn)平行于漸近線時,直線與雙曲線只有一個公共點(diǎn);③設(shè)過的切線方程為與雙曲線聯(lián)立,可得,由,即,解得,直線的條數(shù)為1.綜上可得,直線的條數(shù)為4.故選:A,.7、C【解析】根據(jù)雙曲線的漸近線方程的特點(diǎn),結(jié)合虛軸長的定義進(jìn)行求解即可.【詳解】因?yàn)殡p曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C8、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因?yàn)閮蓤A相外切,可得,解得故選:C.9、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實(shí)半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點(diǎn)睛】方法點(diǎn)睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.10、B【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B11、D【解析】利用等比數(shù)列的下標(biāo)特點(diǎn),即可得到結(jié)果.【詳解】∵,∴,∴,∴.故選:D12、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因?yàn)?,所以所以,,解得,所以不等式的解集為故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)截距定義,分別令,可得.【詳解】由直線,令得,即令,得,即,故.故答案為:14、【解析】設(shè)點(diǎn),根據(jù)拋物線的定義表示出,將用表示,并逐步轉(zhuǎn)化為一個基本不等式形式,從而求出取最小值時的點(diǎn)的坐標(biāo),再根據(jù)雙曲線的定義及離心率的公式求值.【詳解】由題意可得,,,拋物線的準(zhǔn)線為,設(shè)點(diǎn),根據(jù)對稱性,不妨設(shè),由拋物線的定義可知,又,所以,當(dāng)且僅當(dāng)時,等號成立,此時,設(shè)以為焦點(diǎn)的雙曲線方程為,則,即,又,,所以離心率.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是將的坐標(biāo)表達(dá)式逐漸轉(zhuǎn)化為一個可以用基本不等式求最值的式子,從而找出取最小值時的點(diǎn)的坐標(biāo).15、3【解析】根據(jù)等比中項(xiàng)列方程,結(jié)合基本不等式求得的最小值.【詳解】由題可得,則,當(dāng)且僅當(dāng)時等號成立.故答案為:16、【解析】根據(jù)題意求出函數(shù)的導(dǎo)函數(shù)并且通過導(dǎo)數(shù)求出原函數(shù)的單調(diào)區(qū)間,進(jìn)而得到原函數(shù)的極值,因?yàn)楹瘮?shù)僅有一個零點(diǎn),所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值小于或極小值大于,即可得到答案.【詳解】解:由題意可得:函數(shù),所以,令,則或,令,則,所以函數(shù)的單調(diào)增區(qū)間為和,減區(qū)間為所以當(dāng)時函數(shù)有極大值,當(dāng)時函數(shù)有極小值,,因?yàn)楹瘮?shù)僅有一個零點(diǎn),,所以或,解得或.所以實(shí)數(shù)的取值范圍是故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)兩圓內(nèi)切,以及圓過定點(diǎn)列式求軌跡方程;(2)利用重心坐標(biāo)公式可知,,再設(shè)直線的方程為與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點(diǎn)的軌跡是以、為焦點(diǎn),長軸長為的橢圓,則因此曲線的方程是(2)因?yàn)椋瑒t點(diǎn)是的重心,易得直線的斜率存在,設(shè)直線的方程為,聯(lián)立消得:且①②由①②解得則直線的方程為即【點(diǎn)睛】本題考查直線與橢圓的問題關(guān)系,本題的關(guān)鍵是根據(jù)求得,.18、(1),,;(2).【解析】(1)由等差中項(xiàng)的性質(zhì)可求出,又,,構(gòu)成等比數(shù)列,設(shè)出公差,代入可求出,從而求出數(shù)列的通項(xiàng)公式,代入可求出,的值,從而求出數(shù)列的通項(xiàng)公式;(2)將通項(xiàng)公式代入,運(yùn)用裂項(xiàng)相消的方法可求出前項(xiàng)和.【詳解】解析:(1)因?yàn)榈炔顢?shù)列中,,所以,設(shè)數(shù)列公差為,因?yàn)?,,?gòu)成等比數(shù)列,則,即,解得或(舍)即,又等比數(shù)列中,,所以,;(2)∵,∴,∴【點(diǎn)睛】易錯點(diǎn)睛:(1)裂項(xiàng)相消時一定要注意分母的差,一般情況下分母的差是幾,則要在裂項(xiàng)前面乘以幾分之一;(2)裂項(xiàng)相消時要注意保留的項(xiàng)數(shù).19、(1)證明見解析(2)【解析】建立空間直角坐標(biāo)系,計算出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而計算出相關(guān)向量的坐標(biāo);(1)計算向量的數(shù)量積,,根據(jù)數(shù)量積結(jié)果為零,證明線線垂直,進(jìn)而證明線面垂直2;(2)求出平面PCD的法向量和平面PAC的法向量,根據(jù)向量的夾角公式即可求解.【小問1詳解】證明:因?yàn)槠矫鍭BCD,平面ABCD,平面ABCD,所以,,又因?yàn)?,則以A為坐標(biāo)原點(diǎn),分別以AB、AD、AP所在的直線為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,,,則,,所以,,又,平面PAC,平面PAC,∴平面PAC;【小問2詳解】解:由(1)可知平面PAC,可作為平面PAC的法向量,設(shè)平面PCD的法向量,因?yàn)?,所以,即,不妨設(shè),得,又由圖示知二面角為銳角,所以二面角的正弦值為20、(1)證明見解析;(2).【解析】(1)過點(diǎn)作交的延長線于點(diǎn),連接,由,,證出平面,即可證出.(2)以為原點(diǎn),的方向分別為軸正方向,建立空間直角坐標(biāo)系,寫出相應(yīng)點(diǎn)的坐標(biāo),利用,即可得到答案.【小問1詳解】過點(diǎn)作交的延長線于點(diǎn),連接,因?yàn)?,所以,又因?yàn)椋?,所以,即?因?yàn)?,所以平面,因?yàn)槠矫?,所以【小?詳解】因?yàn)槠矫嫫矫妫矫嫫矫?,所以平面,以為原點(diǎn),的方向分別為軸正方向,建立如圖所示的空間直角坐標(biāo)系,則,可得,因?yàn)椋灾本€與所成角的余弦值為21、(1)單調(diào)減區(qū)間為和;(2)的取值范圍為:或【解析】(1)先求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線垂直的條件,可得,求得的解析式,可得導(dǎo)數(shù),令導(dǎo)數(shù)小于0,可得減區(qū)間;(2)先求得,要使函數(shù)無零點(diǎn),即要在內(nèi)無解,亦即要在內(nèi)無解.構(gòu)造函數(shù),對其求導(dǎo),然后對進(jìn)行分類討論,運(yùn)用單調(diào)性和函數(shù)零點(diǎn)存在性定理,即可得到的取值范圍.【詳解】(1),又由題意有:,故.此時,,由或,所以函數(shù)的單調(diào)減區(qū)間為和.(2),且定義域?yàn)?,要函?shù)無零點(diǎn),即要在內(nèi)無解,亦即要在內(nèi)無解.構(gòu)造函數(shù).①當(dāng)時,在內(nèi)恒成立,所以函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減.又,所以在內(nèi)無零點(diǎn),在內(nèi)也無零點(diǎn),故滿足條件;②當(dāng)時,⑴若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)也單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以在內(nèi)無零點(diǎn);易知,而,故在內(nèi)有一個零點(diǎn),所以不滿足條件;⑵若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.又,所以時,恒成立,故無零點(diǎn),滿足條件;⑶若,則函數(shù)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,在內(nèi)也單調(diào)遞增.又,所以在及內(nèi)均無零點(diǎn).又易知,而,又易證當(dāng)時,,所以函數(shù)在內(nèi)有一零點(diǎn),故不滿足條件.綜上可得:的取值范圍為:或.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題、其中分類討論思想.本題覆蓋面廣,對考生計算能力要求較高,是一道難題,解答本題,準(zhǔn)確求導(dǎo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論