遼寧省沈陽二中2026屆數(shù)學高二上期末達標測試試題含解析_第1頁
遼寧省沈陽二中2026屆數(shù)學高二上期末達標測試試題含解析_第2頁
遼寧省沈陽二中2026屆數(shù)學高二上期末達標測試試題含解析_第3頁
遼寧省沈陽二中2026屆數(shù)學高二上期末達標測試試題含解析_第4頁
遼寧省沈陽二中2026屆數(shù)學高二上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省沈陽二中2026屆數(shù)學高二上期末達標測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.2.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.33.圓截直線所得弦的最短長度為()A.2 B.C. D.44.下列結論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.35.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或6.已知點在平面α上,其法向量,則下列點不在平面α上的是()A. B.C. D.7.在空間直角坐標系中,若,,則()A. B.C. D.8.已知等差數(shù)列滿足,,則()A. B.C. D.9.設為實數(shù),則曲線:不可能是()A.拋物線 B.雙曲線C.圓 D.橢圓10.若,則下列結論不正確的是()A. B.C. D.11.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,12.設.若,則=()A. B.C. D.e二、填空題:本題共4小題,每小題5分,共20分。13.若,則___________14.已知正數(shù)、滿足,則的最大值為__________15.已知,分別是雙曲線的左、右焦點,P是其一條漸近線上的一點,且以為直徑的圓經過點P,則的面積為___________.16.已知數(shù)列的前n項和為,則取得最大值時n的值為__________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)判斷的零點個數(shù);(2)若對任意恒成立,求的取值范圍18.(12分)已知橢圓上的點到左、右焦點、的距離之和為4,且右頂點A到右焦點的距離為1.(1)求橢圓的方程;(2)直線與橢圓交于不同兩點,,記的面積為,當時求的值.19.(12分)已知數(shù)列的通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和20.(12分)已知公差不為0的等差數(shù)列,前項和為,首項為,且成等比數(shù)列.(1)求和;(2)設,記,求.21.(12分)已知橢圓與雙曲線有相同的焦點,且的短軸長為(1)求的方程;(2)若直線與交于P,Q兩點,,且的面積為,求k22.(10分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內部)以邊所在直線為旋轉軸旋轉得到的封閉圖形.(1)設,,求這個幾何體的表面積;(2)設G是弧DF的中點,設P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由空間向量的坐標運算和空間向量平行的坐標表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.2、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A3、A【解析】由題知直線過定點,且在圓內,進而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點將化為標準方程得,即圓心為,半徑為,由于,所以點在圓內,所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A4、C【解析】構造函數(shù)利用導數(shù)說明函數(shù)的單調性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調遞減,在上單調遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調遞減,在上單調遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C5、D【解析】根據(jù)斜率存在和不存在分類討論,斜率存在時設直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設直線方程為,即,由,得,直線方程為,即故選:D6、D【解析】根據(jù)法向量的定義,利用向量垂直對四個選項一一驗證即可.【詳解】對于A:記,則.因為,所以點在平面α上對于B:記,則.因為,所以點在平面α上對于C:記,則.因為,所以點在平面α上對于D:記,則.因為,所以點不在平面α上.故選:D7、B【解析】直接利用空間向量的坐標運算求解.【詳解】解:因為,,所以.故選:B8、D【解析】根據(jù)等差數(shù)列的通項公式求出公差,再結合即可得的值.【詳解】因為是等差數(shù)列,設公差為,所以,即,所以,所以,故選:D.9、A【解析】根據(jù)圓的方程、橢圓的方程、雙曲線的方程和拋物線的方程特征即可判斷.【詳解】解:對A:因為曲線C的方程中都是二次項,所以根據(jù)拋物線標準方程的特征曲線C不可能是拋物線,故選項A正確;對B:當時,曲線C為雙曲線,故選項B錯誤;對C:當時,曲線C為圓,故選項C錯誤;對D:當且時,曲線C為橢圓,故選項D錯誤;故選:A.10、B【解析】由得出,再利用不等式的基本性質和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當且僅當時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質和基本不等式,考查推理能力,屬于基礎題.11、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設到的距離為,則,當?shù)拿娣e最小時,,故正確故選:12、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出函數(shù)的導函數(shù),再求出,即可得出答案.【詳解】解:由,得,則,所以,所以,所以.故答案為:.14、【解析】直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學生的計算能力.15、【解析】先得出漸近線方程和圓的方程,然后解出點P的縱坐標,進而求出面積.【詳解】由題意,漸近線方程為:,,圓的方程為:,聯(lián)立:,所以.故答案為:.16、①.13②.##3.4【解析】由題可得利用函數(shù)的單調性可得取得最大值時n的值,然后利用,即求.【詳解】∵,∴當時,單調遞減且,當時,單調遞減且,∴時,取得最大值,∴.故答案為:13;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)個;(2).【解析】(1)求,利用導數(shù)判斷的單調性,結合單調性以及零點存在性定理即可求解;(2)由題意可得對任意恒成立,令,則,利用導數(shù)求的最小值即可求解.【小問1詳解】的定義域為,由可得,當時,;當時,;所以在上單調遞減,在上單調遞增,當時,,,此時在上無零點,當時,,,,且在上單調遞增,由零點存在定理可得在區(qū)間上存在個零點,綜上所述有個零點.【小問2詳解】由題意可得:對任意恒成立,即對任意恒成立,令,則,由可得:,當時,;當時,,所以在上單調遞減,在上單調遞增,所以,所以,所以的取值范圍.18、(1)(2)【解析】(1)根據(jù)題意得到,,再根據(jù)求解即可.(2)首先設,,再根據(jù)求解即可.【小問1詳解】由題意,,因為右頂點到右焦點的距離為,即,所以,則,所以橢圓的標準方程為.【小問2詳解】設,,且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因為的面積為3,可得,解得.19、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯位相減法可求得結果.【小問1詳解】當時,;當時,;當時,;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.20、(1)(2)【解析】(1)由題意解得等差數(shù)列的公差,代入公式即可求得和;(2)把n分為奇數(shù)和偶數(shù)兩類,分別去數(shù)列的前n項和.【小問1詳解】設等差數(shù)列公差為,由題有,即,解之得或0,又,所以,所以.【小問2詳解】,當為正奇數(shù),,當為正偶數(shù),,所以21、(1)(2)或k=1.【解析】(1)根據(jù)題意求得雙曲線的焦點即知橢圓焦點,結合橢圓短軸長,可求得橢圓標準方程;(2)將直線方程和橢圓方程聯(lián)立,整理得,從而得到根與系數(shù)的關系式,然后求出弦長以及到直線PQ的距離,進而表示出,由題意得關于k的方程,解得答案.【小問1詳解】雙曲線即,故雙曲線交點坐標為,由此可知橢圓焦點也為,又的短軸長為,故,所以,故橢圓的方程為;【小問2詳解】聯(lián)立,整理得:,其,設,則,所以=,點到直線PQ的距離為,所以=,又的面積為,則=,解得或k=1.22、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論