版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
專題11離散型隨機變量的分布列及數(shù)字特征一、考情分析二、考點梳理考點一離散型隨機變量的分布列1.隨機變量:如果隨機試驗的結(jié)果可以用一個變量來表示,那么這樣的變量叫做隨機變量.常用希臘字母ξ、η等表示.2.離散型隨機變量:對于隨機變量可能取的值,可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.3.連續(xù)型隨機變量:對于隨機變量可能取的值,可以取某一區(qū)間內(nèi)的一切值,這樣的變量就叫做連續(xù)型隨機變量.4.分布列:設(shè)離散型隨機變量ξ可能取得值為x1,x2,…,x3,…,ξ取每一個值xi(i=1,2,…)的概率為,則稱表ξx1x2…xi…PP1P2…Pi…為隨機變量ξ的概率分布,簡稱ξ的分布列.5.分布列的兩個性質(zhì):任何隨機事件發(fā)生的概率都滿足:,并且不可能事件的概率為0,必然事件的概率為1.由此你可以得出離散型隨機變量的分布列都具有下面兩個性質(zhì):⑴⑵.6.獨立重復(fù)試驗:在同樣的條件下重復(fù)做的次試驗稱為次獨立重復(fù)試驗,每一次試驗只有發(fā)生與不發(fā)生的結(jié)果,即某事件要么發(fā)生,要么不發(fā)生,并且任何一次試驗中發(fā)生的概率都是一樣的.如果在一次試驗中某事件發(fā)生的概率是P,那么在n次獨立重復(fù)試驗中這個事件恰好發(fā)生k次的概率計算公式:.7.常見離散型隨機變量的分布列⑴兩點分布:X01P1-PP⑵二項分布:如果在一次試驗中某事件發(fā)生的概率是P,那么在n次獨立重復(fù)試驗中這個事件恰好發(fā)生k次的概率是,(k=0,1,2,…,n,).稱隨機變量ξ服從二項分布.記作ξ~B(n,p),其中n,p為參數(shù),并記=b(k;n,p).⑶超幾何分布:在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品,則其中,.稱分布列X01…mP…為超幾何分布列,稱X服從超幾何分布.離散型隨機變量:如果對于隨機變量可能取的值,可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.若ξ是一個隨機變量,a,b是常數(shù).則也是一個隨機變量.一般地,若ξ是隨機變量,是連續(xù)函數(shù)或單調(diào)函數(shù),則也是隨機變量.也就是說,隨機變量的某些函數(shù)也是隨機變量.設(shè)離散型隨機變量ξ可能取的值為:ξ取每一個值的概率,則表稱為隨機變量ξ的概率分布,簡稱ξ的分布列.……P……有性質(zhì)①;②.注意:若隨機變量可以取某一區(qū)間內(nèi)的一切值,這樣的變量叫做連續(xù)型隨機變量.例如:即可以取0~5之間的一切數(shù),包括整數(shù)、小數(shù)、無理數(shù).考點二離散型隨機變量的的數(shù)字特征1.期望的含義:一般地,若離散型隨機變量ξ的概率分布為……P……則稱為ξ的數(shù)學(xué)期望或平均數(shù)、均值.數(shù)學(xué)期望又簡稱期望.數(shù)學(xué)期望反映了離散型隨機變量取值的平均水平.2.⑴隨機變量的數(shù)學(xué)期望:①當(dāng)時,,即常數(shù)的數(shù)學(xué)期望就是這個常數(shù)本身.②當(dāng)時,,即隨機變量ξ與常數(shù)之和的期望等于ξ的期望與這個常數(shù)的和.③當(dāng)時,,即常數(shù)與隨機變量乘積的期望等于這個常數(shù)與隨機變量期望的乘積.ξ01Pqp⑵單點分布:其分布列為:.⑶兩點分布:,其分布列為:(p+q=1)⑷二項分布:其分布列為~.(P為發(fā)生的概率)⑸幾何分布:其分布列為~.(P為發(fā)生的概率)3.方差、標(biāo)準(zhǔn)差的定義:當(dāng)已知隨機變量ξ的分布列為時,則稱為ξ的方差.顯然,故為ξ的根方差或標(biāo)準(zhǔn)差.隨機變量ξ的方差與標(biāo)準(zhǔn)差都反映了隨機變量ξ取值的穩(wěn)定與波動,集中與離散的程度.越小,穩(wěn)定性越高,波動越小.4.方差的性質(zhì).⑴隨機變量的方差.(a、b均為常數(shù))ξ01Pqp⑵單點分布:其分布列為⑶兩點分布:其分布列為:(p+q=1)⑷二項分布:⑸幾何分布:5.期望與方差的關(guān)系.⑴如果和都存在,則⑵設(shè)ξ和是互相獨立的兩個隨機變量,則⑶期望與方差的轉(zhuǎn)化:⑷(因為為一常數(shù)).【溫馨提示】離散型隨機變量的均值和方差的求解,一般分兩步:一是定型,即先判斷隨機變量的分布是特殊類型,還是一般類型,如兩點分布、二項分布、超幾何分布等屬于特殊類型;二是定性,對于特殊類型的均值和方差可以直接代入相應(yīng)公式求解,而對于一般類型的隨機變量,應(yīng)先求其概率分布然后代入相應(yīng)公式計算,注意離散型隨機變量的取值與概率間的對應(yīng).求離散型隨機變量概率分布列及數(shù)學(xué)期望是理科高考數(shù)學(xué)的必考題型.求離散型隨機變量概率分布列問題時,首先要清楚離散型隨機變量的所有可能取值,及隨機變量取這些值時所對應(yīng)的事件的概率,計算出概率值后即可列出離散型隨機變量的概率分布列,最后按照數(shù)學(xué)期望的公式計算出數(shù)學(xué)期望.三、題型突破重難點題型突破1隨機變量的分布列例1.(1)已知隨機變量X的分布列如下表:X1234Pm則實數(shù)m的值為(
).A. B. C. D.(2)下列X是離散型隨機變量的是(
)①某座大橋一天經(jīng)過的車輛數(shù)X;②在一段時間間隔內(nèi)某種放射性物質(zhì)放出的α粒子數(shù)η;③一天之內(nèi)的溫度X;④一射手對目標(biāo)進行射擊,擊中目標(biāo)得1分,未擊中得0分,用X表示該射手在一次射擊中的得分.A.①②③④ B.①②④C.①③④ D.②③④(3)已知隨機變量的概率分布如下表,且,則______.0123P0.1mn0.1(4)把3個骰子全部擲出,設(shè)出現(xiàn)6點的骰子個數(shù)是X,則P(X<2)=________.【變式訓(xùn)練1-1】如圖所示是離散型隨機變量X的概率分布直觀圖,則(
)A.0.1 B.0.12 C.0.15 D.0.18【變式訓(xùn)練1-2】將一顆均勻骰子擲兩次,不能作為隨機變量的是(
)A.兩次擲得的點數(shù)B.兩次擲得的點數(shù)之和C.兩次擲得的最大點數(shù)D.第一次擲得的點數(shù)減去第二次擲得的點數(shù)的差【變式訓(xùn)練1-3】若隨機變量X的分布列如下表所示:X0123Pab則a2+b2的最小值為________.【變式訓(xùn)練1-4】將3個小球任意地放入4個大玻璃杯中,一個杯子中球的最多個數(shù)記為X,則X的分布列是________.重難點題型突破2隨機變量的數(shù)字特征例2.(1)已知隨機變量X的分布列如下表:X0246P0.10.2m0.2則的值為(
).A.2 B.2.4 C.3.6 D.不確定(2)已知隨機變量的分布列為:X124P0.40.30.3則等于(
)A.15 B.11C.2.2 D.2.3(3)(多選)設(shè)離散型隨機變量X的分布列為X01234Pq0.40.10.20.2若離散型隨機變量Y滿足,則下列結(jié)果正確的有(
)A. B.C. D.【變式訓(xùn)練2-1】已知離散型隨機變量X的分布列如下:X123P則數(shù)學(xué)期望(
)A. B. C.1 D.2【變式訓(xùn)練2-2】已知隨機變量的分布列為:設(shè),則的數(shù)學(xué)期望的值是(
)A. B. C. D.【變式訓(xùn)練2-3】已知m,n均為正數(shù),隨機變量X的分布列如下表:X012Pmnm則下列結(jié)論一定成立的是(
)A. B.C. D.例3.(1)隨機變量的可能值,且,則D的最大值為___________.(2)(多選)設(shè),已知隨機變量的分布列如下表,則下列結(jié)論正確的是(
)012PA. B.的值最大C.隨著p的增大而增大 D.當(dāng)時,【變式訓(xùn)練3-1】已知一組數(shù)據(jù)的方差是1,那么另一組數(shù)據(jù),,,,,的方差是(
)A.1 B.2 C.3 D.4【變式訓(xùn)練3-2】隨機變量ξ的分布列如下表:ξ1a9Pbb其中,,則下列說法正確的是(
)A.若,則當(dāng)時,隨b的增大而增大B.若,則當(dāng)時,隨b的增大而減小C.若,則當(dāng)時,有最小值D.若,則當(dāng)時,有最大值重難點題型突破3綜合應(yīng)用例4.某公司舉行了一場羽毛球比賽,現(xiàn)有甲、乙兩人進行比賽,每局比賽必須分出勝負(fù),約定每局勝者得1分,負(fù)者得0分,比賽進行到有一人比對方多2分或打滿8局時停止.設(shè)甲在每局中獲勝的概率為,且各局勝負(fù)相互獨立.(1)求第二局比賽結(jié)束時比賽停止的概率;(2)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量的分布列和數(shù)學(xué)期望.例5.“學(xué)習(xí)強國”學(xué)習(xí)平臺軟件主要設(shè)有“閱讀文章”“視聽學(xué)習(xí)”兩個學(xué)習(xí)模塊和“每日答題”“每周答題”“專項答題”“挑戰(zhàn)答題”四個答題模塊,還有“四人賽”“雙人對戰(zhàn)”兩個比賽模塊.“四人賽”積分規(guī)則為首局第一名積3分,第二、三名積2分,第四名積1分;第二局第一名積2分,其余名次積1分;每日僅前兩局得分.“雙人對戰(zhàn)”積分規(guī)則為第一局獲勝積2分,失敗積1分,每日僅第一局得分.某人在一天的學(xué)習(xí)過程中,完成“四人賽”和“雙人對戰(zhàn)”.已知該人參與“四人賽”獲得每種名次的概率均為,參與“雙人對戰(zhàn)”獲勝的概率為,且每次答題相互獨立.(1)求該人在一天的“四人賽”中積4分的概率;(2)設(shè)該人在一天的“四人賽”和“雙人對戰(zhàn)”中累計積分為,求的分布列和.例6.《中共中央國務(wù)院關(guān)于實現(xiàn)鞏固拓展脫貧攻堅成果同鄉(xiāng)村振興有效銜接的意見》明確提出,支持脫貧地區(qū)鄉(xiāng)村特色產(chǎn)業(yè)發(fā)展壯大,加快脫貧地區(qū)農(nóng)產(chǎn)品和食品倉儲保鮮、冷鏈物流設(shè)施建設(shè),支持農(nóng)產(chǎn)品流通企業(yè)、電商、批發(fā)市場與區(qū)域特色產(chǎn)業(yè)精準(zhǔn)對接.當(dāng)前,脫貧地區(qū)相關(guān)設(shè)施建設(shè)情況如何?怎樣實現(xiàn)精準(zhǔn)對接?未來如何進一步補齊發(fā)展短板?針對上述問題,假定有A、B、C三個解決方案,通過調(diào)查發(fā)現(xiàn)有的受調(diào)查者贊成方案A,有的受調(diào)查者贊成方案B,有的受調(diào)查者贊成方案C,現(xiàn)有甲、乙、丙三人獨立參加投票(以頻率作為概率).(1)求甲、乙兩人投票方案不同的概率;(2)若某人選擇方案A或方案B,則對應(yīng)方案可獲得2票,選擇方案C,則方案C獲得1票,設(shè)是甲、乙、丙三人投票后三個方案獲得票數(shù)之和,求的分布列和數(shù)學(xué)期望.例7.中國在歐洲的某孔子學(xué)院為了讓更多的人了解中國傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場由當(dāng)?shù)厝藚⒓拥闹袊鴤鹘y(tǒng)文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機抽取名人員的成績(滿分100分)作為樣本,將所得數(shù)據(jù)進行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在內(nèi)的頻數(shù)為3.(1)求的值;(2)已知抽取的名參賽人員中,成績在和女士人數(shù)都為2人,現(xiàn)從成績在和的抽取的人員中各隨機抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.
四、課堂訓(xùn)練(30分鐘)1.拋擲兩枚質(zhì)地均勻的骰子一次,X為第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)之差,則X的所有可能取值為(
)A.0≤X≤5,X∈N B.-5≤X≤0,X∈ZC.1≤X≤6,X∈N D.-5≤X≤5,X∈Z2.設(shè)一汽車在開往目的地的道路上需經(jīng)過5盞信號燈,Y表示汽車首次停下時已通過的信號燈的盞數(shù),則表示“遇到第5盞信號燈時首次停下”的事件是(
)A.Y=5 B.Y=4C.Y=3 D.Y=23.若p為非負(fù)實數(shù),隨機變量ξ的分布列為ξ012P則的最大值為(
)A.1 B. C. D.24.現(xiàn)有一個項目,對該項目每投資10萬元,一年后利潤是1.2萬元,1.18萬元,1.17萬元的概率分別為隨機變量X表示對此項目投資10萬元一年后的利潤,則X的均值為(
)A.1.18 B.3.55 C.1.23 D.2.385.已知隨機變量X的分布列為X-101P設(shè)Y=2X+3,則E(Y)的值為____6.已知隨機變量的分布列為-101則隨機變量的方差的值為______.7.某景點電動車租車點的收費標(biāo)準(zhǔn)是每車每次租車時間不超過1h免費,超過1h的部分每小時收費10元(不足1h的部分按1h計算).有甲、乙兩人相互獨立來該租車點租車游玩(各租一車次).設(shè)甲、乙不超過1h還車的概率分別為,,1h以上且不超過2h還車的概率分別為,,兩人租車時間都不會超過3h.(1)求甲、乙兩人所付的租車費用相同的概率;(2)設(shè)甲、乙兩人所付的租車費用之和為隨機變量,求的分布列及數(shù)學(xué)期望.8.根據(jù)國家部署,2022年中國空間站“天宮”將正式完成在軌建造任務(wù),成為長期有人照料的國家級太空實驗室,支持開展大規(guī)模、多學(xué)科交叉的空間科學(xué)實驗.為普及空間站相關(guān)知識,某部門組織了空間站建造過程3D模擬編程闖關(guān)活動,它是由太空發(fā)射、自定義漫游、全尺寸太陽能、空間運輸?shù)?0個相互獨立的程序題目組成.規(guī)則是:編寫程序能夠正常運行即為程序正確.每位參賽者從10個不同的題目中隨機選擇3個進行編程,全部結(jié)束后提交評委測試,若其中2個及以上程序正確即為闖關(guān)成功.現(xiàn)已知10個程序中,甲只能正確完成其中6個,乙正確完成每個程序的概率為,每位選手每次編程都互不影響.(1)求乙闖關(guān)成功的概率;(2)求甲編寫程序正確的個數(shù)X的分布列和數(shù)學(xué)期望,并判斷甲和乙誰闖關(guān)成功的可能性更大.專題11離散型隨機變量的分布列及數(shù)字特征A組基礎(chǔ)鞏固1.某商場銷售某種品牌的空調(diào),每周初購進一定數(shù)量的空調(diào),商場每銷售一臺空調(diào)可獲利500元,若供大于求,則每臺未售出的空調(diào)需交保管費100元;若供不應(yīng)求,則可從其他商場調(diào)劑供應(yīng),調(diào)劑的空調(diào)每臺可獲利200元.該商場記錄了去年夏天(共10周)空調(diào)的周需求量n(單位:臺),整理得表:周需求量n1819202122頻數(shù)12331以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若該商場周初購進20臺空調(diào),X表示當(dāng)周的利潤(單位:元),則當(dāng)周的平均利潤為(
)A.10000元 B.9400元 C.8800元 D.9860元2.2021年世界園藝博覽會于2021年4月到10月在江蘇省揚州市舉行,“花藝園”的某個部位擺放了10盆牡丹花,編號分別為0,1,2,3,……,9,若從任取1盆,則編號“大于5”的概率是(
)A. B. C. D.3.拋擲兩枚骰子各一次,記第一枚骰子擲出的點數(shù)與第二枚骰子擲出的點數(shù)的差為X,則“X>4”表示試驗的結(jié)果為(
)A.第一枚為5點,第二枚為1點B.第一枚大于4點,第二枚也大于4點C.第一枚為6點,第二枚為1點D.第一枚為4點,第二枚為1點4.已知隨機變量的概率分布如下:12345678910則(
)A. B. C. D.5.把半圓分成4等份,以這些等分點(包括直徑的兩端點)為頂點,作出三角形,從這些三角形中任取3個三角形,記這3個三角形中鈍角三角形的個數(shù)為X,則(
)A. B. C. D.6.已知隨機變量X的分布列為X012P設(shè),則等于(
)A. B. C. D.7.已知隨機變量的分布列如下,則的最大值為(
)X123Pab2b—aA. B.3C.6 D.58.已知隨機變量X的分布列是:若,則(
)A. B. C. D.9.甲、乙兩人下象棋,贏了得3分,平局得1分,輸了得0分,共下三局.用表示甲的得分,則表示(
)A.甲贏三局B.甲贏一局輸兩局C.甲、乙平局三次D.甲贏一局輸兩局或甲、乙平局三次10.隨機變量的分布列如圖所示,則其數(shù)學(xué)期望(
)123A. B. C. D.不能確定11.學(xué)校要從5名男生和2名女生中隨機抽取2人參加社區(qū)志愿者服務(wù),若用表示抽取的志愿者中女生的人數(shù),則隨機變量的數(shù)學(xué)期望的值是(
)A. B.C. D.112.根據(jù)以往的經(jīng)驗,某工程施工期間的降水量X(單位:mm)對工期的影響如下表:降水量X工期延誤天數(shù)Y02610歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,則工期延誤天數(shù)Y的方差為______.13.某射手射擊一次所得環(huán)數(shù)X的分布列如下表:X78910P0.10.40.30.2現(xiàn)該射手進行兩次射擊,以兩次射擊中所得最高環(huán)數(shù)作為他的成績,記為,則______.14.設(shè)隨機變量X的概率分布列如下表所示:X012Pa若F(x)=P(X≤x),則當(dāng)x的取值范圍是[1,2)時,F(xiàn)(x)等于_______15.若隨機變量X的概率分布如表,則表中a的值為______.X1234P0.20.30.3a16.下面給出三個變量:(1)2013年地球上發(fā)生地震的次數(shù)ξ.(2)在一段時間間隔內(nèi)某種放射性物質(zhì)發(fā)生的α粒子數(shù)η.(3)在一段時間間隔內(nèi)某路口通過的寶馬車的輛數(shù)X.其中是隨機變量的是____.17.為了降低對大氣的污染和能源的消耗,某品牌汽車制造商研發(fā)了兩款電動汽車車型A和車型B,并在“十一黃金周”期間同時投放市場.為了了解這兩款車型在“十一黃金周”的銷售情況,制造商隨機調(diào)查了5家汽車4S店的銷量(單位:臺),得到如下數(shù)據(jù):4S店車型甲乙丙丁戊車型A6613811車型B1291364現(xiàn)從這5家汽車4S店中任選3家舉行促銷活動,用X表示其中車型A銷量超過車型B銷量的4S店的個數(shù),則______.18.隨機變量X的取值為0,1,2,若,,則_________.19.一袋中裝有分別標(biāo)記著,,數(shù)字的個小球,每次從袋中取出一個球(每只小球被取到的可能性相同),現(xiàn)連續(xù)取次球,若每次取出一個球后放回袋中,記次取出的球中標(biāo)號最小的數(shù)字與最大的數(shù)字分別為,,設(shè),則______.20.隨機變量的概率分布為01且,則________.B組能力提升21.(多選)某市有A,B,C,D四個景點,一位游客來該市游覽,已知該游客游覽A的概率為,游覽B,C和D的概率都是,且該游客是否游覽這四個景點相互獨立.用隨機變量X表示該游客游覽的景點的個數(shù),下列正確的是(
)A.游客至多游覽一個景點的概率為 B.C. D.22.(多選)已知隨機變量X的分布列如下表所示,其中a,b,c成等差數(shù)列,則(
)X-101PabcA.a(chǎn)= B.b=C.c= D.P(|X|=1)=23.(多選)設(shè)ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,ξ=0;當(dāng)兩條棱平行時,ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時,ξ=1,則隨機變量ξ的取值對應(yīng)的概率正確的是(
).A.P(ξ=0)= B.P(ξ=)=C.P(ξ=1)= D.P(ξ=)=24.(多選)設(shè)離散型隨機變量的分布列為-10123則下列各式正確的是(
)A. B.C. D.25.(多選)已知隨機變量X的分布列如下表(其中a為常數(shù)):X01234P0.10.20.40.2a則下列計算結(jié)果正確的有(
)A.a(chǎn)=0.1 B.P(X≥2)=0.7C.P(X≥3)=0.4 D.P(X≤1)=0.326.(多選)盒子中共有2個白球和3個黑球,從中不放回任取兩次,每次取一個,則下列說法正確的是(
)A.“取到2個白球”和“取到2個黑球”是對立事件B.“第一次取到白球”和“第二次取到黑球”是相互獨立事件C.“在第一次取到白球的條件下,第二次取到黑球”的概率為D.設(shè)隨機變量和分別表示取到白球和黑球的個數(shù),則27.(多選)有一組樣本甲的數(shù)據(jù),由這組數(shù)據(jù)得到新樣本乙的數(shù)據(jù),其中為正實數(shù).下列說法正確的是(
)A.樣本甲的極差一定小于樣本乙的極差B.樣本甲的方差一定大于樣本乙的方差C.若為樣本甲的中位數(shù),則樣本乙的中位數(shù)為D.若為樣本甲的平均數(shù),則樣本乙的平均數(shù)為28.(多選)有一組樣本甲的數(shù)據(jù),由這組數(shù)據(jù)得到新樣本乙的數(shù)據(jù),其中為正實數(shù).下列說法正確的是(
)A.樣本甲的期望一定小于樣本乙的期望B.樣本甲的方差一定大于樣本乙的方差C.若m為樣本甲的中位數(shù),則樣本乙的中位數(shù)為D.若m為樣本甲的平均數(shù),則樣本乙的平均數(shù)為29.2022年北京冬奧會有包括中國隊在內(nèi)的12支男子冰球隊參加比賽,12支參賽隊分為三組,每組四隊,2月9號至13號將進行小組賽,小組賽采取單循環(huán)賽制,即每個小組的四支參賽隊在比賽中均能相遇一次,最后按各隊在比賽中的得分多少來排列名次.小組賽結(jié)果的確定規(guī)則如下:①在常規(guī)時間里,獲得最多進球的隊為獲勝者,獲勝者得3分;②在常規(guī)時間里,如果雙方進球相等,每隊各得1分.比賽繼續(xù)進行,以突然死亡法(即在規(guī)定的時間內(nèi)有一方進球)加時賽決出勝負(fù),突然死亡法加時賽中獲勝的隊將額外獲得1分;③在突然死亡法加時賽中,如果雙方都沒有得分,那么進行點球賽,直至決出勝負(fù),在點球賽中獲勝的隊將額外獲得1分.若在小組賽中,甲隊與乙隊相遇,在常規(guī)時間里甲隊獲勝的概率為,進球數(shù)相同的概率為;在突然死亡法加時賽中,甲隊獲勝的概率為,雙方都沒有得分的概率為;在點球賽中,甲隊獲勝的概率為,假設(shè)各比賽結(jié)果相互獨立.(1)在甲隊與乙隊的比賽中,求甲隊得2分獲勝的概率;(2)在甲隊與乙隊的比賽中,求甲隊得分的分布列及數(shù)學(xué)期望.30.為迎接年冬奧會,北京市組織中學(xué)生開展冰雪運動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進行了考核.記表示學(xué)生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貨裝值班員安全強化競賽考核試卷含答案
- 船閘及升船機水工員操作技能水平考核試卷含答案
- 玉米收獲機操作工持續(xù)改進知識考核試卷含答案
- 棘皮類養(yǎng)殖工崗前規(guī)章考核試卷含答案
- 工程地質(zhì)工程施工鉆探工安全文明考核試卷含答案
- 硅烷偶聯(lián)劑生產(chǎn)工創(chuàng)新實踐競賽考核試卷含答案
- 糞便清運工崗前理論考核試卷含答案
- 汽車機械維修工誠信品質(zhì)強化考核試卷含答案
- 飛機燃油動力系統(tǒng)安裝調(diào)試工創(chuàng)新思維強化考核試卷含答案
- 地理信息建庫員操作模擬考核試卷含答案
- 俄烏之戰(zhàn)課件
- 2025年廚房燃?xì)鈭缶靼惭b合同
- 環(huán)孢素的臨床應(yīng)用
- 國開電大《11837行政法與行政訴訟法》期末答題庫(機考字紙考)排序版 - 稻殼閱讀器2025年12月13日12時58分54秒
- 2025河北廊坊市工會社會工作公開招聘崗位服務(wù)人員19名考試筆試備考試題及答案解析
- 2025國家電投集團中國重燃招聘18人筆試歷年參考題庫附帶答案詳解
- 框架日常維修協(xié)議書
- 浙江省寧波市第七中學(xué)2025-2026學(xué)年九年級上學(xué)期期中語文試題(含答案)
- 2025年城市智慧安防系統(tǒng)可行性研究報告及總結(jié)分析
- 統(tǒng)編版語文三年級上冊第七單元《習(xí)作:我有一個想法》課件
- 智研咨詢發(fā)布-2025年中國電子變壓器件行業(yè)市場運行態(tài)勢及發(fā)展趨勢預(yù)測報告
評論
0/150
提交評論